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1 Normal operators

There is a certain view point, connecting the study of linear transformations with matrices, which runs
through the notes below. It is not always made explicit, since it would be maddeningly distracting to stop
and formulate a precise lemma correlating the two every time this issue reappears; instead the reader is
supposed to understand the link and be able to go back and forward whenever necessary.

Every finite dimensional complex vector space is “isomorphic” (which means “looks just like”) some C™.
Every linear transformation on C" is given by matrix multiplication. In fact, T : C* — C" is linear* if and
only if there is some matrix Ay € M, (C) with

T(v) = vAr

all v € C" (I follow Curtis in multiplying on the right). The operator T is unitary if and only if Ar moves
some® orthonormal basis to some other orthonormal basis. T is invertible as a linear transformation if and
only if Ar is invertible as a linear transformation. Given any basis, vy, ..., ,v,, of C*, we may find a linear
transformation which moves the standard basis, e, es, ..., €, to that basis; the transformation is given by
the matrix with j*® row equal to v;. Indeed a matrix is invertible if and only if its rows form a basis, if and
only if the corresponding linear transformation is invertible.

And so it goes on. We may even end up deciding that there is no real difference between linear transfor-
mations and matrices. This is not quite true of course, since linear transformations are these ethereal objects
which transform vectors, while matrices are literally speaking inert rows of complex numbers, but despite
between not quite true the slogan “linear transformations are matrices” does not lead us to far astray.

Definition For M € M,(C), we define M*, the adjoint of M, to be the complex conjugate of the transpose
of M:

M* = (MT)
Thus if M equals
1 3i 5
1—4¢ 10i 2
0 0 1
then M™* equals

1 144 0
-3 —10i 0
5 2 1

At the level of linear transformations one can actually prove a little lemma showing that for any linear
S : C" — C" there will exist a unique linear S* : C* — C™ with

(5(v),w) = (v, 5% (w))

all v,w € C". In fact, if we take the matrix associated to S and take its adjoint and look at the associated
linear transformation then one can argue that it does indeed satisfy this above mentioned equality.

That gives us one way of proving that any linear transformation has an adjoint. The uniqueness of the
adjoint follows from the following easy fact, which I may as well mention now in case it comes up later.

Fact 1.1 v,w € C" are equal if and only if for all u € C* we have

(u,v) = (u, w).

e. T(aw + Bu) = aT(v) + BT (u) all o, 8 € C,v,u € C*
2equivalently, all, as it turns out



Here are some basic properties of the adjoint:

Lemma 1.2 For A,B € M,(C)

(i) A*=A

(ii) (AB)* = A*B*

(iii) (A*)~L (if it emists) = (A~1)*

(i) for any u,v € C", (uA,v) = (u,vA*).
Proof (i) and (ii) are direct calculation, while (iii) follows from (ii). (iv) is again a calculation, but one can
ease the work by noting that we just have to establish it for u,v = e;, €;. O

The adjoint operation has appeared already in Curtis under disguise. He in effect defines the unitary
group to be the A € GL,(C) with
A* = A7t

and goes on to show that this definition is equivalent to the one I gave above.

Definition A is self-adjoint or Hermitian if A = A*. If A has real entries then it self-adjoint if and only if
the 4, j*" entry always equals the j,i*", and we say that A is symmetric. A is normalP if it commutes with
its adjoint:

AA* = A% A.

Lemma 1.3 A is self-adjoint if and only if
(vA,u) = (v,uA)
all u,v € C*.

Lemma 1.4 If A is self-adjoint then
(vA,v) e R

allveCr.

Lemma 1.5 If A is normal and V(A) = {v € C" : vA = \v}, then
(i) vA* = Xv allv € V()
(i) (V(A)A* C V()
(i) (VDA C V(AL

Proof For (i) we can calculate that

(0(A = M), 0(A = \I)) =0

implies _ _
(v(A* — AI),v(A* — X)) = 0.

(i) gives (ii) and (ii) gives (iii). O

(b 1)

Which parts, if any, of the lemma fail for this matrix?

Question Consider the non-normal

3Roll of drums. Blast of trumpet. This is the central concept for the next while.



Note that in the last lemma, the set V' ()\) is necessarily a subspace (closed under addition and scalar
multiplication) of C*. If A # A’ then we necessarily have V(A) N V(') = {0}.

Lemma 1.6 If A is normal and V() as above, V*(\) = {v € C" : vA* = \v},
then
HVXN=VQ) _
(it) (V*(N\)A C V*(\)
(iii) (V*(AN)1H)A* Cc V*(A)*

Theorem 1.7 Let A € M,(C) be normal. Then there is an orthonormal basis of eigenvectors of A.

Proof By crunching the characteristic polynomial of A, we get some Ag with A—\gI having zero determinant,
hence non-invertible, and hence sending some non-zero vector to the zero vector; in other words, V(\g) is
non-trivial. If V/()\g) = C" then we simply take any orthonormal basis of C* and finish early.

Otherwise we appeal to earlier lemma to see that V(\g)* is an invariant subspace, and so we can find
some other A\; which is an eigenvector for the linear transformation associated to A restricted to the subspace
V(Xo)*. Continuing on in this way, and appealing to the fact that C" is finite dimensional, we obtain a
sequence of eigenspaces, which jointly span C". O

Corollary 1.8 If A € M, (C) is normal, then we may find a diagonal matriz D and a unitary U with
A=U"'DU.

Actually, one can see that the conclusion of this corollary characterizes normality, and hence since not
all matrices are normal we cannot hope to obtain such a strong diagonalizability result in general. About
the best we can do for arbitrary matrices is:

Theorem 1.9 Jordan Canonical form Given an arbitrary linear transformation T : C* — C™ we can find a
sequence of invariant subspaces, Vi, ..., Vi, disjoint except for sharing 0, such that on each V; we have that
with respect to some appropriate basis T is represented by the matriz

A 10 0.0
0 X 1 0.0
0 0 A 1.0

<

0 0 0 0.

We can say something for real matrices and their diagonlizability. In the next theorem we view R™ as
vector space over R in the usual way.

Theorem 1.10 If A € M,(R) is symmetric, then all the eigenvalues are real and there is an orthonormal
basis consisting of eigenvectors.

Proof Since A = A* then we have all the eigenvectors are real by (i) 1.5. That much granted, the proof is
much the same as before. m|

There is a nice corollary of 1.7 which appeared as an exam problem on one of the qualifying exams for
the graduate students. (As an aside on departmental gossip I will mention that many of the faculty members
where outraged that most of the graduate students were unable to answer this “easy undergraduate linear
algebra” problem.)



Exercise Let H C GL,(C) be an abelian group* of normal matrices. Show that the elements of H are
simultaneously diagonalizable — that is to say, there some U with

U tAu
diagonal for all A € H.
An interesting application of these ideas comes about with rigid body motion.

Definition A matrix A € O3(R) (the orthogonal® 3 x 3 matrices) is said to be a rigid body motion if there
is a continuous function
t— At

[0,1] = Os(R)
with Ag = I and A; = A; that is to say, there is a continuous path connecting the to identity to A.

In one of the class presentations the next theorem was credited to Euler.
Theorem 1.11 Let A be a rigid body motion. Then A is a rotation.

Proof Since A preserves lengths and angles, it preserves volumes, and hence has determinant one or minus
one.® The continuous function

t— Ay
leads by composition to the continuous function
t — Det(A4;)
[0,1] = {-1,1},
since each A; also preserves area. Since Det(Ag)=1, we have by continuity that in fact Det(A;) = 1

throughout, and in particular A has determinant 1.
Then consider the characteristic polynomial

Py(s) = Det(sI — A).

At s = 0 we have P4(0) = —1, whilst as s = 400 we have Pa(s) =& +o0o. Thus there must be some real
eigenvalue A in the interval (0, +o00); if we let v be a corresponding eigenvector, then it follows from

lol = lvA]

that in fact A = 1.
Since A preserves orthogonality, {aw : @ € R}* is A-invariant. Thus we may find a basis of R* under
which A looks like

1 00
0 a b
0 ¢ d

4That is to say, for all A, B € H we have AB = BA.

5The orthogonal matrices are the unitary matrices with real entries; in terms of linear transformations, these correspond to
the linear isomorphisms of real euclidean space which preserve angles and distances.

5We use a few well known facts about matrices, such as the determinant of a matrx equals the ratio it effects in changing
volumes and areas. We could take this as a definition of determinant, though equally one can show it equivalent to one of the
usual definitions by first calculating the equivalence for the elementary matrices and then extending to the rest by multiplication.



In fact, we can assume from now on that this is the form of A.
Now consider the behavior of A on the canonical basis {e1, ez, e3}.

€1A =e1.
e2A = (0,a,b).
esA = (0,¢,d).

These must again form an orthonormal basis.

From this it rapidly follows that (c,d) is a linear combination of (a, —b) and a? + b? = ¢? + d* = 1, and
from this we obtain that (c,d) equals either (a,—b) or (—a,b). The determinant being 1 rules out the later
possibility and we are left with

1 0 0O
A=10 a b
0 =-b a

Since a? + b2 = 1, we may choose § with cos(f) = a, sin(f) = b. Thus with respect to our chosen basis,
1 0 0
A=10 cos(d) sin(9)
0 —sin(d) cos(d)

In terms of our original basis and eigenvector, A is a rotation of angle # around the axis v. a



2 Polar decomposition

Lemma 2.1 For A € M,(C), the following are equivalent:
(i) A = B2 for some Hermitian A;
(i) A is Hermitian and (vA,v) € RZ® allv € V.

Proof Assuming (i) we obtain
A*=(B?)*=B*B*=BB=A

and thus for any v
(vA,v) = (vB*,v) = (vB,vB*) = (vB,vB) >0

since B Hermitian. Conversely assuming (ii) we can diagonalize A and then note that in diagonal form it
must have positive reals down the main diagonal and zeros elsewhere. O

Lemma 2.2 If A € M,(C) then we can find V o subspace of C* and U unitary such that
(i) v = vUA gives a one-to-one and onto linear transformation;
(i) there is a basis V1,V2, ..., Vm, V1, ---Un 0f V such that
(a) v1,...., U is a basis of V; and
(b)) v;UA=0all j > m.

In (ii) we have essentially said that v,,41, ..., v, is a basis for the null space of U A.
Theorem 2.3 For any A € M,(C) we may find Hermitian C and unitary U with
A=UC

Proof Appealing to 2.2 we may assume that A is invertible. We then note that A* A is Hermitian and that
for any v € C" we have
(vA*A,v) = (vVA*,vA*) > 0;

thus by 2.1 we can find some Hermitian D with
A*A = D"
Thus it suffices to show that (A*)~!D? is unitary. For this we behold:
(A*) 1 D2((A4*)"'D?)* = (4*) ' D*(D?)*((4*) )"
— (A)ID2D2(A) = (A4*) DAY = (A%) AT AA = T

Definition We say that B is positive if there is some Hermitian C' with C2 = B.

Thus over M;(C) ~ C the positive elements are those in RZ%. Then in this simple case the polar
decomposition says that any z € C can be written in the form

ru
where r > 0, |u| = 1, which in turn gives us that u = €’ some § € R, and thus

0

z =re" =rcosf + irsinf,

which may be familiar as the polar representation of the complex number z.



3 Group representations

Definition A representation of a group G is a homomorphism
p:G— GL,(C).

It is unitary if its range is included in the unitary matrices.

In other words, a unitary representation of the group G is a homomorphism’ from G to U, (C). Mostly
in this section and next I will work with unitary representations, which allow us to make use of the diagoniz-
ability. Some of the results actually go through in wider generality, providing we are willing to avail ourselves
of the stated but unproven Jordan canonical form. For finite groups one can show that every representation
is equivalent to a unitary representation.

Example Let G = (a|a® = 1) = Z3. Define p: G — U,(C) by

_1l_iBym

P(am)=(( 2% 1 Oi\/s m)'
0 (=3 +7%)
Exercise Given |G| = n, with an enumeration {g;};<» of G, show that we can define a unitary representation
p:G— U, (C

by letting p(g) be the matrix which has mostly zeros, except 1 at the i, j*! spot when g - g; = g;.
Definition Two representations p,6 : G — GL,(C) are equivalent if there is some A € GL,(C) with

plg) = A710(9)A

all ¢ € G. A not necessarily invertible m x n matrix A is said to intertwine p : G — GL,(C) and
0:G — GL,,(C) if at every g we have

Definition Given a representation

p:G— GL,(C),
we say that a subspace V' C C" is p-invariant if at every g € G we have
Vp(g) C V.

We say that p is irreducible if the only invariant subspaces are C* and {0}.

Lemma 3.1 Let p : G — U,(C) be a unitary representation and V C C"* a p-invariant subspace. Then we
may find a p-invariant W with

Cc=vVEPWw;

that is to say, VNW = {0} and every u € C* can be written in the form v = v+w for somev € V,w € W.

"There is an annoying detail, bequeathed to us by Curtis’ voraciously disturbing notation. If the assignment g +— p(g)
is a homomorphism to GL,(C), then that won’t necessarily guarantee that the assignment to g of the linear transformation
associated to p(g) gives us a homomorphism of G to the group of linear transformations on C*. It should, but it does not. If
for each A € GL,(C) we let ¢4 be the associated linear transformation, v — vA, then alas ¢4 o ¢ = PBoa. In actually fact,
I am going to simply try to ignore this annoying detail, keep up the facade of identifying linear transformations with matrices,
and make no distinction between a homomorphism from G to GL,(C) and a homomorphism from G to the group of linear
transformation on C*. One can actually pass between them, with suitable care; given a representation p : G — GL,(C) one
defines a homomorphism into the group of linear transformations g : g — Plp(g))=1"

This was a pain. Enough said.



Proof Note that V- = {w € C" : Vv € V({v,w) = 0)} is also p-invariant. O

Thus by continually applying the above lemma and appealing to the finite dimensionality, we may even-
tually break any representation down into a finite sum of irreducible representations. Of course one can also
go in the opposite direction: Given two representations p, #, mapping G into the linear groups on V and W,
one can form the space

V@W:{(v,w) v eV,we W},

and associate to each g the linear transformation on V€W which moves (v,w) = (S,(y) (v), Ty(g) (w)),
where S, ;) is the transformation provided by p and T4 (w) is the transformation provided by 6.

Theorem 3.2 Let p : G — GL,(C) be irreducible and let A intertwine p with itself. Then there is some
A€ C with A= Al

Proof Let A be an eigenvalue for A and V(A) be the corresponding eigenspace. Then for any g € G,
veV(\
vp(9)A =vAp(g) = (M)p(g) = Mv(p(g))

and hence vp(g) is still in V/(A). Thus V' ()) is p-invariant, contains a non-zero vector, and hence by assump-
tion on p must be equal to all of C". O

This theorem or the next easy proposition is sometimes called Schur’s lemma.

Proposition 3.3 Let p,0 be two irreducible representations on C*,C™ which are intertwined by A, and
n X m matriz. Then either A is trivial, in the sense of consisting of nothing but zeros, or m = n and A is
inwvertible.

Proof Consider the null space of A, {v € C" : vA = 0}. This is p-invariant subspace of C", and hence equal
to either C* or {0}. In the latter case, we can then consider the range space of A, {vA : v € C"} and use
the same argument to conclude that it must be all of C™. O

Definition Let p : G — GL,(C) be a representation. We say that an irreducible representation € is included

in p if we may write
cr=vEPpw

where the representation p restricted to V' (i.e. for each g € G just consider the linear transformation p(g)
restricted to V) is equivalent to 6.

Lemma 3.4 Given a representation p: G — GL,(C) and an irreducible representation 0, we may write
c=v@w
where p restricted to U is equivalent to a finite direct sum of 8 and 6 is not included in p restricted to W.

Given an irreducibility representation p, we have that there are no non-trivial intertwiners. The situation
with finite sums of irreducible representations is a bit more subtle; we can say something, but we need the
language of vector spaces to do so. Note here that the collection of intertwiners between two representations
is closed under addition as well as scalar multiplication, and in this sense forms a vector space in its own
right.



Lemma 3.5 Given a representation p: G — GL,(C) and an irreducible representation 0, with
c=v@Pw

where p|y is equivalent to a direct sum of k copies 8, and 0 is not included in plw, then the dimension of
the intertwining operators between 6 and p equals k.

Definition Given a representation p : G — GL,(C), p: C* — C" is said to be a projection for p if p> = p
and for all g € G, pp(g) = p(g)p.

Definition For G a finite group, let C[G] consist of all functions f : G — C; note that this space is naturally
isomorphic to C!/%!. We let define the regular left representation of G to be the representation which associates
to each g the linear transformation Ag4:
f = )‘g (f)7
where A (f) is defined by
(Mg ())(h) = flg~'h)

for all h € G; one routinely checks that this indeed gives us a homomorphism into the group of linear
transformations on C[G].

Lemma 3.6 For G finite, there is a non-trivial intertwining operator from C[G] to any non-trivial repre-
sentation.

Proof Let g — S, be the homomorphism from G to the group of linear transformations of some vector
space V; we can assume that it is an irreducible representation; we fix some non-zero v € V. We can then
define
T:CG] =V
by
Fr Y F(9)S, ().

geG
O

Note then that if the space V has dimension n, then we essentially have dimension n choices for T':
we could have chosen v to be any element of V', and conversely given the intertwiner T', T is completely
determined by T'(d.) (where J. is the function which assumes the value 1 at the identity of G and zero
elsewhere).

So now suppose we apply 3.4 to write

6] = PP v

i<t my

where the A|y,’s are mutually non-equivalent irreducible representations, appearing as suggested by the
notation n; many times inside the regular left representations. Then it follows from 3.5 that the intertwiners
between A and each A|y, is exactly n;; which in turn by the observation of the last paragraph must equal
the dimension of V;. Finally note that the dimension of C[G] equals the size of G, which in turn must equal
the sums of the dimensions of the various ,,, V.

Thus with simple homespun methods we have established the following startling theorem:

Theorem 3.7 Suppose G is finite group and we enumerate the irreducible representations

pi : G = GL,,(C),

Gl = 3" (niy.

each p; having dimension n;. Then

10



4 Character and trace
Definition If M € M,(C), we let 7(M), the trace of M, be the sum of the diagonal entries.

Example Thus the trace of

1 0 3
0 1+4 O
4 0 61

is 2 + 7.
Lemma 4.1 For A,B € M, (C) we have
7(AB) = 7(BA).
Proof A brute calculation. O
Thus we have 7(A) = 7(C~1AC) for any invertible C.
Lemma 4.2 If A € U,(C) has all its eigenvalues with absolute value 1, then
(A1) = 7(4).

Proof We may assume that A is a diagonal matrix, and then note that in this form it will have complex
numbers of modulus 1 down the diagonal and zeros elsewhere. O

Definition y : G — C is a character if there is a representation
p:G— GL,(C)

with x = 7 0 p — that is to say, x(g) is the trace of p(g). We say that a character is irreducible if it arises
from an irreducible representation.

Remark In the case n = 1 any character will be a homomorphism; however if p : Z — GL,,(C) is defined

by
_ e'i2\/2n7r 0

then the induced trace is not a homomorphism.

Lemma 4.3 Let G be a finite group, p : G — U,(C) a unitary representation, x : G — C be the induced
character. Then for any g € G

(i) all the eigenvalues of p(g) have absolute value 1;

(i) x(97") = x(9);

(iir) if x(g) = x(1) then p(g) = I.

Proof Fix g; we may assume p(g) is diagonal. Then (i) follows since g™ is the identity for some m € N. (ii)
then follows from 4.2. For (iii) we can observe that a sequence of n complex numbers sum to n if and only
if they all equal 1. m|

Example Let G = Dg = group of symmetries of the square. So G = (a,b;a* = 1,b> = 1,bab™! = a™1).
Etc.

11
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5 Characters for abelian groups

The character theory for finite abelian groups is especially satisfying. Every irreducible representation will
be one dimensional and every irreducible character will be a homomorphism from G to C.

The irreducible characters will form an orthonormal basis for C[G]. In an appropriate group structure,
the characters will actually form a group themselves, called the dual group, G, of G. The dual group of the
dual group of G, X

G,
equals the original group G.

Ishould make a general remark about terminology. For abelian groups it can be shown that the irreducible
characters are already sufficient to separate points: that is to say, for any g # h in an abelian group G there
is an irreducible character x : G — C with x(g) # x(h). For this reason people frequently restrict themselves
entirely to irreducible characters of abelian groups and use the term character to only refer to irreducible
character. For this section only I will adopt that terminology: Everywhere I say character you should read
irreducible character.

Lemma 5.1 If G is abelian and x : G — C is a character, then x is a homomorphism from G into the
multiplicative group of the non-zero complex numbers.

Proof It is easily seen that if 7' and S are commuting linear transformations ('S = ST) and V) r is the
space of eigenspace for T' and eigenvalue A, then S[Vy 1] C Vi r. Then by restricting ourselves to S|v, 1
we may find a common eigenvector. Continuing in this fashion we can show that any collection of mutually
commuting linear transformations has a common eigenvector, and hence an abelian group only has one
dimensional irreducible representations.®

Thus, if x : G — C is an (irreducible) character, then there is a homomorphism

p:G — GL(C)

with x(g) equal to the trace of p(g) for all ¢ € G; under the natural identification of GL{(C) with the
multiplicative group of C\ {0} one has that the trace of every complex number is just that very same
complex number. O

Lemma 5.2 Let G be a finite abelian group. Then for all characters x1,x2 : G = C\ {0} we have

> x1(9)x2(g) =0.

geG

8Here I am implicitly assuming that we start off considering finite dimensional vector spaces; it actually turns out that
the same result is true if we contemplate the wider perspective of representations of abelian groups on separable and possibly
infinite dimensional Hilbert spaces, but the proof is far more subtle. The proof becomes more subtle because a normal operator
on an infinite dimensional Hilbert space may have no eigenvectors.

12



Proof Since x; # x2 we may find some specific hg € G with x1(ho) # x2(ho), which amounts to saying

that
1

x2(ho)
since x2 : G = C\ {0} is a homomorphism this implies

(ho)X2( ) #1
2o x1(ho)xz2(ho) # 1

x1(ho) #1;

by 4.3(ii).
Now notice that

x1(ho)x2(ho) D x1(9)x2(9) = Y x1(ho)x1(9)x2(h0)x2(9)
9eEG gEG
=Y x1(hog)x2(hog);
g€eG

since X1, x2 are homomorphisms,

S= Z x1(9)x2(9)

9€eG
since G = {hog : g € G}. But the only way that we could have x1(ho)x2(ho) # 1 and
> xa(9)x2(9) = xa(ho)x2(ho) Y x1(9)x2(9)
9eG geG
is if the quantity }° 5 x1(9)x2(9) equals zero. O

Lemma 5.3 Let G be a finite abelian group. Then for all characters x
Z x(g = |G|(the size of G).

geqG

Proof Referring back to 4.3 again we get that at every g

x(9)x(9) = x(9)x(g™ ")

=x(99~ ") =x(0) =1,
since x is a homomorphism from the abelian group G to the multiplicative group of the non-zero complex
numbers. O

The last two lemmas can be reformulated in the language of Hilbert spaces. Let G be a finite abelian
group of size n. For any two
Fl; F2 :G—->C

let us define

(Fy, Fy) = Z Fi(g
geG
This gives us a perfectly good inner product space on the vector space of complex valued functions on G.
(Note: This space is in some natural way isomorphic to C".) It is a finite dimensional inner product space.
With this terminology paved into the ground, we can reformulate the last two lemmas with the following
proposition:

13



Proposition 5.4 The characters of o finite abelian group form an orthonormal set.

So far so good. But of course this proposition only screams out the question of whether they are an
orthonormal basis. The answer to this is yes indeed, and that is the main result here.

Theorem 5.5 The characters of a finite abelian group form an orthonormal basis for its space of complex
valued functions.

Proof I am going to cheat somewhat and appeal to the classification theorem for finite abelian groups;
you probably won’t have seen this unless you have taken math 110a, but perhaps you would be willing to
believe it anyway. In actual fact we will give a general argument for arbitrary finite abelian groups in the
next section, but this argument is somewhat involved and I want to get out an elementary argument for the
abelian case first.

The classification theorem for abelian groups tells us that any finite abelian group can be written as a
product of finitely many cyclic groups, each cyclic group necessarily isomorphic to some Zj (the natural
numbers {0,1, ...,k — 1} with addition mod k — that is to say, we let £; + £» = m if m is the remainder when
we try to divide k into £1 + £»). In fact I am going to cheat a little bit more an assume that G is just equal
to some such Z,; that is to say, as a single product. The general case requires some more details, but if you
have taken a course in group theory then perhaps those details may be clear to you.

So G = Z,, and we are trying to show that the characters form an orthonormal basis for G¢. We will do
this by considering dimension.

GC has dimension n. If we can show that there are n distinct characters then we will be happy.

Let us consider the n*® root of unity

E=ewi.
For £ ={1,2,...,n} we can define the character
xe:G—C
by
xe(m) = 5
for m € {0,1,....,n — 1}. O

Corollary 5.6 For G a finite abelian group and g # 0 in G, there is a character
x:G—->C
with x(g) # 1.

Proof Consider the subspace H C G® consisting of all F': G — C with F(g) = F(1); it is easily checked
that this is a subspace, and so if our orthonormal basis was included in this subspace we would have H = G€,
which is obviously untrue. m|

In some form the results above go through in a wider context. Given an infinite abelian group G one can
still talk about irreducible characters and still hope that the irreducible characters are sufficient to separate
points; this much still turns out to be true, but with the usual refrain that the proof is much more subtle.
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6 Characters for non-abelian groups

Rather messy.
I want to first of all point out that at least one of the facts we observed for abelian groups passes through
to the general case with no trouble at all.

Lemma 6.1 Let G be a finite group and
g— A4,

a (finite dimensional, unitary’ ) representation and
x:G—-C
the corresponding character given by x(g) = Trace(4,). Then x(g~1) = x(g).

Proof We observe that the matrices A, and A,-1 commute, are normal, and hence are simultaneously
diagonalizable. Without loss of generality we may assume that they are in fact already in diagonal form.
(Since trace is conjugation invariant, calculating the character with respect to a different basis introduces
no change). Then since the matrices are unitary, A, consists of complex numbers of absolute value 1 down
the diagonal and A,-1, as its inverse, must consist of the corresponding complex conjugates in the indicated
order down the main diagonal. a

In what follows I wish to increasingly think in terms of a representation as a homomorphism from a
group to a group of invertible linear transformations. Morally of course this is much the same thing as a
homomorphism into a group of matrices, but in practice one rapidly becomes overwhelmed with the fiddly
and fussy details involved in constantly setting up the precise correspondence.

For G a finite!® group we let C[G] be the vector space of complex valued functions from G to C; this is
of course isomorphic to C* where n = |G|, it has a basis over C the functions {d, : g € G}, each of which
assume the value 1 at the relevant g and zero elsewhere, and it suggest two natural representations of G.

Notation For V a vector space, let £(V') be the algebra of linear transformation on V; note that we may
add two linear transformation and multiply by a scalar, as well as compose, and for this reason we describe
the group of objects as an algebra. We let GL(V') be the collection of invertible linear transformations on
V; this is now a group under composition, but we lose the ability to add.

Definition We let GL(C[G]) be the group of invertible linear transformations on C[G]. We define the
representation p of G given by

p: G - GL(CQ))
pig > pg
where for each g € G and f : G — C we define p,(f) by the rule
(g ())(h) = f(hg);

in other words, we multiply on the right. You can check without too much trouble that this defines a
representation (the main issue being that pg, g, (f) = pg, (Pg> (f)))-
A similar definition works on the left, but now we actually need to be more careful. What works is

Aigre )y

9We are in fact making the harmless assumption that all our representations are unitary.
10Here and onwards we assume G is finite
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where we define each A, (f) by the rule
Mg (N))(R) = flg™"h).

! may seem strange, but without it we lose the critical identity Ay, g, (f) = Ag, (Mg (f))-

The choice of g~

These two representations interact nicely. In some sense they commute. This will be the key observation,
from which everything else follows.

Definition We let L(G) be the linear transformations in GL(C[G]) generated by the {), : g € G}; that is
to say, L(G) consists of all linear transformations of the form

For Y e,
g€eG
for some choice of constants ¢, € C.

Similarly let R(G) be the linear transformations generated by the {p, : g € G}.

Lemma 6.2 Suppose § € GL(C[G]) commutes with every p, (and hence in fact with every element of R[G]).
Then 0 € L[G].

Proof Recall that the characteristic functions of the form d, provide a basis for the vector space. Note that
at each g, h € G' we have the slightly unintuitive equation p, - 6p = 6,4-1. Consider the behavior of 8 at de,
the characteristic function of the identity of G.

Say 0(de) = >- e @g0y- Then at every h € G we have d, = pj-10., and hence

0(6n) = =1 (0(06)) = Y cgpn-185 = D _ agon,
9eEG geEG
which in turn, if you crunch out the definition, equals

D oAy (81).

geG

Similarly:
Lemma 6.3 If § € GL(C[G]) commutes with every A\, then 6 € R[G].

Recall that we previously saw that we may write a general representation, such as p : G — C[G], as
a direct sum of irreducible representations. I want to go a bit further than that and collect together the
irreducible representations of like similarity.

It might be helpful to establish some notation before formulating the next lemma.

Notation For
w:G— GL(V)
g—my
a representation, we let I(m,m) be the collection intertwiners of 7 to itself: That is to say, those § : V — V

such that
Qomyg=mgo08

all g € G. We then take the idea one further step and let Z (7, n) be those 6 € I(n,7) which commute with
every element in I(m,7): That is to say, ¢ : V — V linear is in Z(m,7) if and only if for every 6 € I(n,7)
we have o = pod.

16



Thus from 6.2 we have L[G] = I(p, p); we are yet to come to any definite analysis of Z(p, p), though it
does follow from 6.3 that it must actually be included R[G].

Lemma 6.4 }_ ; agp, is in Z(p,p) if and only if the function
g o
is constant on conjugacy classes; that is to say, for all g,h € G
ahgh_1 = Oég.

Proof Any such element of R[G] at once commutes with every element of I(p,p) = L[G] by 6.3, and the
trick is to determine when it satisfies further conditions placing it in Z(p, p).

> geG Qgpg Will be in Z (p, p) if it commutes with the representation p, which is to say it commutes with
every element {pp, : h € G}. Which amounts to saying that at every g and h

Ohg = Qgh,
which after replacing g by gh~! indeed is as required. O

Lemma 6.5 Let 7 : G — GL(V) be a representation. Let

V=P Vi)

i<k j<¢

where each V; ; is irreducible and V; ; is isomorphic to Vy j if and only if i =14’
Then Z(m,m) is generated by the projections onto the subspace

DV
Jj<¢
for various i < k; in particular, Z(w, ) has dimension k.

Proof For i # i’ we have that there are no intertwiners from V; ; to Vi j», which means that the various
projections described above do indeed commute with all the elements of I(m, ).

On the other hand, an element of Z (7, 7) must behave identically on each V; ;, V; j» and it must commute
with any projection onto a V; ;; from this it follows that each Z(m,7) will be a linear combination of the
above described projections. O

Notation Let CI(G) be the collection of conjugation of invariant functions from G to C.
Note that any character (irreducible or not) must be in CI(G): They are all conjugation invariant.
Corollary 6.6 The dimension of CI(G) equals the number of inequivalent irreducible representations of G.

Proof We may appeal to 3.6 and decompose p as
6] = @ viy),
i<k j<t

as in the last lemma where the V; 1,V51,..., V},1 enumerate all the irreducible representations of G. The
last lemma tells us that the dimension of Z(p,p) = k; and from 6.4 we have that this in turn equals the
dimension of CI(G). O
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We can now go ahead and as in the case of abelian groups define an inner product on the conjugacy
invariant functions

a:G—C
g ay

given by

(aaﬂ) = Z agﬁ_g-

g€eG

If we have can establish that the characters arising from irreducible representations are orthogonal under
this inner product, then it follows from 6.6 and consideration of the dimension that they must span the space
CI(@G).

Since characters are defined in terms of trace, and trace is defined in terms of matrices, it will be helpful
to revert to the standpoint of representations as homomorphisms to groups of matrices.

Lemma 6.7 Let
7 : G = GL,(C)

g A

and

m : G = GL,(C)
g~ By

be representations of G and let C' be any n by m matriz. Then

C*=Y"A,CBy=
9€eG

intertwines the two representations.
Proof For any h € G we wish to show that

ApC*Bj-1 = C*.
Writing this out we observe that the equalities

ApC*By—1 = Ay (D AgCBy-1)Ap-1 = Y ApA;CBy-1 By,
9€G 9€G

and then using that g — Ay,— B, are homomorphisms, this equals

Z ApgCBpg)-1,
9€G

which is simply a different way of summing up

> A,CBy-1 = C*.

g€eG
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Corollary 6.8 Assume further that the representations from the last lemma are inequivalent irreducible
representations. For each i,j let

ai;j g+ aij(g),
bi,j : g~ bij(9),
be the scalar valued functions assigning to each g € G the i,5* entry of Ay, B, respectively. Then for any

ivj S n, k7e S m
Za,’] bkg 1) =0.
g€eG

Proof We let C be the n x m matrix with a 1 in the 7, k*" spot and a solid slate of zeroes everywhere else.
It is then not hard to see that
Z -1
a; _7 bk Z );

gEeG

and then by the previous lemma provides an intertwiner from the first representation to the second; since
they are inequivalent irreducible representations, Schur’s lemma gives C* = 0. O

Corollary 6.9 Let x4,xB : G — C be irreducible characters. Then

> xalg)xs(g) =0

9€eG

Proof We assume that the characters arise from irreducible
G - GL,(C

g— A4,
G = GL,,(C)
g+~ By

respectively. Recall that x5(g~') = xB(g), so we are actually trying to show

> xalg)xslg™) =0.

geG

Then by the last lemma, for any i, j

Zam bii(g™") =0,

9€eG

and so certainly

> xal@xsl@™) =D D> aiid@)biila) =YY D aii(@bii(eh) =) xal9)xs(g™1)

geG 9g€G i<n j<m i<n j<mgeqG 9€G

equals zero, as required. O
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Thus, combined with the previous 6.6, we have that the characters form an orthogonal basis for the
conjugacy invariant functions on G under the inner product

(X1, x2) = |G| le

g€eG

If we have a representation
G — GL,(C),

g— A4,
with associated character x4 : G — C, then we may try to calculate

ZXA 9)xalg ZXA

geG 9€eqG

by our usual trick of summing in a different order. For the usual reasons we may assume that A, is diagonal,
and hence that at any ¢
(ai,i(9)) ™" = aii(g)-

Then it easily comes out

XA Zazz azz )) 12”3

i<n

summing over all g we obtain therefore

z xa(g)xa(g) = n|G|.

9eG

Thus if we take the set of functions
1
{=x : x arises from an n-dimensional irreducible representation, for some n},
n

then we obtain an orthonormal basis for the conjugacy invariant functions on G. In the case that G is abelian
any function on G is conjugacy invariant!!, and thus we subsume the results from the previous section.

There is also a philosophically interesting consequence of these calculations. If 71,7 are irreducible
representations then of course the corresponding characters, x1, x2, are a consequence of the similarity class:
Equivalent representations give rise to identical characters. Thus if 71,72 are equivalent representations,
then

(15 x2) =ar =1 2 x1(9)Xa(g
|G|
geG

equals their common dimension. If they are inequivalent then we observed that (x1,x2) = 0.

In this manner the slippery question of isomorphism or equivalence or representations has been reduced
to the purely mechanical procedure of taking an inner product. Instead of searching high and low for the
appropriate isomorphism, we test their equivalence by simply making a calculation.

Since G is commutative exactly when ghg—! = h all g, h.
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7 Perron-Frobenius

Definition A matrice norm on M, (C) is a norm under which this collection of n-by-n matrices becomes a
Banach space under addition'? and satisfies the additional inequality

1AB] < [A] - | B.
Examples For A = (a;;), let

j=n
Al = max{)_ |},

=1

the maximum of the sum of the absolute value of the row.
If | - | is a matrice norm, and S is invertible, then | - | s defined by

|Als = |57t AS]
is again a matrice norm.
Definition For A € M, ,, we let p(A) be the supremum of |A|, as A ranges over eigenvalues of A.

Lemma 7.1 p(A) equals the infinum of the set of positive reals a > 0 such that

A
lim, oo (—)" = 0.
a

Proof This amounts to saying that
lim, oo A" =0

if and only if p(A) < 1. By considering Jordan canonical form, we may assume that A consists of a sequence
of blocks down the main diagonal, each of the form

A1 0 ..
0 2 1 0
0 0 .. A

as A runs over the eigenvalues. Since these blocks multiply together independently, we may as well simply
assume

A1 0
A= 0 X 1 0 7
0 0 .. A

and we want to show that A™ — 0 if and only if |A| < 1.

The various n*® powers of A have A" down the diagonal, and so we certainly have that |A| < 1 is necessary
for convergence to 0. We are left with showing sufficiency.

I will leave this an exercise. One way to prove it as follows. We show by induction on j < m (where A
is m x m) that the quantity

f(m,j) = Z lam—j.il = 0,
i<m
2|aA| = |o||A], |A + B| < ||A| + | B, and the induced metric d(A, B) = |A — B| is complete, in the sense of all Cauchy

sequences having a limit.
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where a,_; ; equals the i*" entry in the m — j* row of A™. Once we know that f(m, j) is very small for all

m > M, then at each such m

fm+1,5+1) <A f(m,j+1) + f(m, j),

which, assuming |\ + f(m,j) < 1, will start to push f(m,j + 1) towards zero. |
Corollary 7.2 If || - | is a matrice norm, then for any A
p(A) <|A].

Notation We write A < B if (A = (a;5), B = (bi;) and) each a;; < b;;. Write 0 < Aifeach a;; > 0;0< A
if each a;; > 0.

Lemma 7.3 If0 < A < B then p(4) < p(B).
Proof By 7.1. O

Lemma 7.4 If0 < A and ). a;; is constant, then for any

p(A) = Z Qjj-

j<n

j<n

Proof For # = (1,1,...,1), a vector in R® we have that Z is an eigenvector with eigenvalue ) j<n @ij, which
in turn equals || A|lco- Thus the lemma follows from 7.2. a O

Corollary 7.5 If0 < A, then
min, Z agj < p(A).

j<n

Proof Multiplying the rows by the right positive constants, we may find a positive matrix B = (b;;) < A

with each
Z bij S ming z Qgj-

isn i<n

Corollary 7.6 If & = (z1, %2, ...,T,) is positive (i.e. each x; > 0), and A > 0, then
o1
min; — Z ai;z; < p(A).
i j<n

That is to say, at some i <n
Z aijzj < z;p(A).

j<n

Proof Consider
I1 0

Tn
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and
7t 0

X 1=

Then by the last corollary we have

p(A) = p(X 1AX) > min; Z aii%;.

j<n

Corollary 7.7 If £ > 0 and A > 0 then at some i

Z(Af)ij < p(A)T;.

j<n

Proof We may apply 7.6 to a sequence (Z;); of strictly positive vectors which approach &; then the corollary
follows by continuity. m|

Theorem 7.8 (Perron) If A > 0 then there is an £ > 0 with
Az = p(4) - 7,
and hence > 0.
Proof Choose A with |A| = p(A) and then choose & with
AZ=X-Z.

Then
WH = \al = |Adl < |4l = A
Thus let y = Alf — W|i; we have in the above line that y > 0, and if y = 0 we are done. So suppose for a

contradiction that y # 0.
Then Ay >0

- AAR) > AN = NAR.

Thus if A = Z = (21, 22, ..., 2n,) We have Z > 0 and at each i <n

> aiz > Wai = p(A)zi,

i<n
contradicting last corollary. m|
Corollary 7.9 If 0 < A then there is non-zero £ > 0 with
p(A)T = AZ.
Proof We may choose a sequence of positive matrices (B;); with
IBilloc = 0,

Biy1 < B,
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and then we may apply Perron to A; = B; + A; let p; = p(4;).
At each ¢ we may choose Z; > 0 of length 1 with

Ai%s = pi - Ti.

By 7.3 we have each p; > piy1 > p(A), and thus for py the limit point of the monotone sequence p; and
Z > 0 an accumulation point of the set {Z; : ¢ € N} we have by 7.6

P(A)T < poo = lim;p;¥; = lim; A; % = AT < p(A)Z,
and thus there is equality throughout and the lemma is proved. m|
Lemma 7.10 If A >0, £ # 0, and AZ = p(A)Z, then ¥ = aff some a € C, i > 0.

Proof We have by 7.7 that
AlZ| < p(A)|F] = |AZ| < AlZ],

and hence |AZ| < A|Z|. But then considering the nature of the triangle inequality we must have & = af
some a € C and § = |Z]; and then in fact § > 0 since Ay = p(4)y > 0. |

Corollary 7.11 If A > 0 then the eigenspace corresponding to p(A) has dimension 1.

Proof Otherwise from the last lemma we obtain independent positive eigenvectors z, 2> > 0 for p(A). Then
some k € R™ gives a new eigenvector 7 = kZ; — 7> > 0 with a zero entry in some coordinate.
But since p(A)Z = AZ > 0 we have Z > 0 with a contradiction. O
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