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Some classical descriptive set theory

Definition A topological space is said to be
Polish if it is separable and it admits a complete
compatible metric.

We then say that the Borel sets are those ap-
pearing in the smallest σ-algebra containing the
open sets.

A set X equipped with a σ-algebra is said to be
a standard Borel space if there is some choice
of a Polish topology giving rise to that σ-algebra
as its collection of Borel sets.

A function between two Polish spaces,

f : X → Y,

is said to be Borel if for any Borel B ⊂ Y the
pullback f−1[B] is Borel.
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Theorem 0.1 (Classical) If X is a Polish
space and B ⊂ X is a Borel set, then B
(equipped in the σ-algebra of Borel subsets
from the point of view of X) is standard Borel.

Theorem 0.2 (Classical; the “perfect set the-
orem”) If X is a Polish space and B ⊂ X is
a Borel set, then exactly one of:

1. B is countable; or

2. B contains a homeomorphic copy of Can-
tor space, 2N (and hence has size 2ℵ0).
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Theorem 0.3 (Classical) If X is a standard
Borel space, then the cardinality of X is one
of {1, 2, 3, ....,ℵ0, 2

ℵ0}.

Moreover!

Theorem 0.4 (Classical) Any two standard
Borel spaces of the same cardinality are Borel
isomorphic.

Here we say that X and Y are Borel isomor-
phic if there is a Borel bijection

f : X → Y

whose inverse is Borel.1

Thus, as sets equipped with their σ-algebras
they are isomorphic.

There is a similar theorem for quotients of the
form X/E, E a Borel equivalence relation.

1In fact it is a classical theorem that any Borel bijection must have a Borel inverse
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The analogues for Borel equivalence

relations

Definition If X is a standard Borel space, an
equivalence relation E on X is Borel if it ap-
pears in the σ-algebra on X × X generated by
the rectangles A×B for A and B Borel subsets
of X .

Theorem 0.5 (Silver, 1980) Let X is a stan-
dard Borel space and assume E is a Borel
equivalence relation on X. Then the cardi-
nality of X/E is one of

{1, 2, 3, ....,ℵ0, 2
ℵ0}.

However here there is no moreover.

In terms of Borel structure, and the situa-
tion when X/E is uncountable, there are vastly
many possibilities at the level of Borel structure.
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In the last twenty years, one of the major
projects of set theorists has to be try to un-
derstand the range of possibilities.
This was initiated by two key papers.

A Borel Reducibility Theory for Classes of
Countable Structures, H. Friedman and L. Stan-
ley, The Journal of Symbolic Logic, Vol.
54, No. 3 (Sep., 1989), pp. 894-914

A Glimm-Effros Dichotomy for Borel Equiv-
alence Relations, L. A. Harrington, A. S. Kechris
and A. Louveau, Journal of the American

Mathematical Society, Vol. 3, No. 4 (Oct.,
1990), pp. 903-928

Neither paper referenced the other, and yet
they used the exact same terminology and no-
tation to introduce a new concept.
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Definition Given equivalence relations E and
F on X and Y we say that E is Borel reducible
to F , written

E ≤B F,

if there is a Borel function

f : X → Y

such that

x1Ex2 ⇔ f (x1)Ff (x2).

In other words, the Borel function f induces
an injection

f̂ : X/E → Y/F.

The perspective of Friedman and Stanley was
to compare various classes of countable struc-
tures under the ordering ≤B. The Harrington,
Kechris, Louveau paper instead generalized ear-
lier work of Glimm and Effros in foundational
issues involving the theory of unitary group rep-
resentations.
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“Borel cardinality”

Definition The cardinality of X is less than
or equal to Y ,

|X| ≤ |Y |,

if there is an injection from X to Y .

This might suggest a notion of “cardinality”
where we restrict our attention to some restricted
class of injections.

This in turn could relate to the idea that an
equivalence relation E on a set X is in some
sense classifiable if there is a “reasonably nice”
or “natural” or “explicit” function

f : X → I

which induces (via x1Ex2 ⇔ f (x1) = f (x2))
an injection

f̂ : X/E → I.
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In the context of unitary group representation
a definition exactly along these lines was pro-
posed by G. W. Mackey.

Definition (Mackey) An equivalence relation
E on a Polish space X is smooth if there is a
Polish space Y and a Borel function f : X → Y
such that

x1Ex2 ⇔ f (x1) = f (x2).

Many well known classification theorems can
be viewed, in part, as giving a Borel reduction of
one Borel equivalence relation to another. For
instance Baer’s classification of rank one torsion
free groups can be viewed as demonstrating a
Borel reduction from the isomorphism relation
on rank one torsion free abelian groups to el-
ements of 2N×P considered up to finite agree-
ment. The spectral theorem for infinite dimen-
sional operators implies isomorphism of unitary
representations of Z is Borel reducible to mea-
sures considered up to absolute continuity.
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Definition Let E0 be the equivalence relation
of eventual agreement on 2N. For X a Polish
space let id(X) be the equivalence relation of
equality on X .

Thus in the above notation we can recast Mackey’s
definition of smooth: An equivalence relation E
is smooth if for some Polish X we have

E ≤B id(X).

It turns out that for any uncountable Polish
space X we have

id(R) ≤B id(X)

and
id(X) ≤B id(R).

10



Theorem 0.6 (Silver, rephrased) Let E be a
Borel equivalence relation. Then exactly one
of the following two conditions holds:

1. E ≤B id(N);

2. id(R) ≤B E.

Theorem 0.7 (Harrington, Kechris, Louveau)
Let E be a Borel equivalence relation. Then
exactly one of the following two conditions
holds:

1. E ≤B id(R);

2. E0 ≤B E.

This breakthrough result, this paradigm di-
chotomy theorem, suggested the possibility of
understanding the structure of the Borel equiv-
alence relations up to Borel reducibility.
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It turns out that these are the only global di-
chotomy theorems of this nature. The research
in the area has generally proceeded by divid-
ing the Borel equivalence relations in to certain
natural classes, and working inside these.

For instance it is natural to divide Borel equiv-
alence relations on the basis of whether they
are “countable” (or at least Borel reducible to a
countable equivalence relation).

Definition A Borel equivalence relation is count-
able if every equivalence class is countable.

Another natural class, at least for a logician,
are those equivalence relations classifiable by
countable structures.
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Definition An equivalence relation E on a Pol-
ish space X is classifiable by countable struc-
tures if there is a countable language L and a
Borel function

f : X → Mod(L)

such that for all x1, x2 ∈ X

x1Ex2 ⇔ f (x1)
∼= f (x2).

This is something like asking for an equiva-
lence relation to have complete algebraic invari-
ants, and it has many equivalent forms. For in-
stance, it is equivalent to asking that there be a
Borel way of assigning a countable linear order
or a countable group whose isomorphism type
is a complete invariant. It is also equivalent to
E being Borel reducible to the orbit equivalence
relation induced by a Borel action of S∞ (the
Polish group of all permutations of N).
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It follows quickly from the definitions and some
minor massaging that if a Borel equivalence re-
lation is countable then it is classifiable by count-
able structures.

We might then divide the situation up in to
three classes:

1. Borel equivalence relations which are not clas-
sifiable by countable structures.

2. Borel equivalence relations which are classi-
fiable by countable structures, but not Borel
reducible to countable Borel equivalence re-
lations.

3. Countable Borel equivalence relations.

I will go ahead in order and try to quickly
summarize the state of knowledge about these
three classes, but it is really the last class which
is relevant to this talk.
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Borel equivalence relations which are

not classifiable by countable structures

Here we know nothing and there is no known
body of techniques which seem to be helpful.2

2For the purposes of this talk that is probably an on target summary, but it is not quite fully accurate. Ilijas Farah has a
sequence of technically demanding papers which borrow ideas from Banach space theory to provide spectacular counterexamples
to various nature conjectures. It is also true that logicians have developed something we call the theory of turbulence, which
has proven very succesful in determining when an equivalence relation is classifiable by countable structures. For instance:

1. (Hjorth) The homeomorphism group of the unit square,

Hom([0,1]2),

considered up to homeomorphism does not admit classification by countable structures.

2. (Gao) Countable metric spaces up to homeomorphism does not admit classification by countable structures.

3. (Törnquist) Measure preserving actions of F2 up to orbit equivalence do not admit classification by countable structures.
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Borel equivalence relations which are
classifiable by countable structures but

are not Borel reducible to a countable

equivalence relation

Here we know a lot, and all the techniques
arise from logic, or set theory, in some general
sense.3

3These were the kinds of problems considered in the Friedman-Stanley paper.
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Countable Borel equivalence relations

Every major negative result (showing some
countable E not Borel reducible to some F )
relies on measure theory, and uses techniques
arising from outside logic.
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Definition Let E and F be equivalence rela-
tions on standard Borel probability spaces (X,µ),
(Y, ν). Then we say that E is orbit equivalent
to F if there is a measure preserving bijection

θ : X → Y

with
θ[[x]E] = [θ(x)]F

for almost all x ∈ X .

Definition Given countable groups Γ, ∆ and
a measurable action of Γ on a standard Borel
probability space (X,µ), a measurable map

α : Γ × X → ∆

is a cocycle if for all γ1, γ2 ∈ Γ and a.e. x ∈ X
we have

α(γ1γ2, x) = α(γ1, γ2 · x)α(γ2, x).
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Here it might be worth introducing a third,
rather ad hoc, definition simply for comparison.

Definition Let E and F be equivalence rela-
tions on standard Borel probability spaces (X,µ),
(Y, ν). Write

E ≤B,m F

if there is a conull X0 ⊂ X with

E|X0
≤B F.

In the case that ∆ acts freely (and in a Borel
manner) on Y , Γ acts (in a Borel manner) on
X ,

E ≤B,m F

implies that there is a resulting cocycle from Γ
to ∆.
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The typical proofs that one countable Borel
equivalence relation is not Borel reducible to ac-
tually end up showing that there is a failure of
this ≤B,m. It is pretty much true (though one
can argue on the edges) that every proof of non-
reduction with respect to ≤B among countable
Borel equivalence relation actually derives from
a proof of non-reduction with respect to ≤B,m,
and that these in turn often use ideas from orbit
equivalence.4

In many cases, however, theorems for orbit
equivalence turn out to be insufficient, as far
as we can tell, to establish the parallel theorem
for Borel reducibility.

4It should be underscored though that the applications of measure theoretic ideas can be quite indirect. For instance, there
isn’t any non-trivial invariant Borel probability measure on the space of rank n torsion free abelian groups, but Thomas’ proof
that rank n + 1 is not Borel reducible to rank n ultimately imports measure theoretic ideas in an indirect way.
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A comparison between orbit equiva-

lence theorems and Borel reducibility

theorems

Theorem 0.8 (Gaboriau-Popa, c, 2000[?])
There are continuum many free, measure pre-
serving action of F2 (on standard Borel prob-
ability spaces) up to orbit equivalence.

None of us were able to adapt their proof to say
anything about the Borel reducibility version of
this problem. In fact, the final solution to this
borrowed as much from a paper of Ioana.

Theorem 0.9 5 (Hjorth, 2008) There are con-
tinuum many free, Borel actions of F2 (on
standard Borel spaces) up to Borel reducibil-
ity, ≤B.

5Here we were really concerned with the problem of treeable equivalence relations, but it turns out to be equivalent to the
theorem as stated.
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Theorem 0.10 (Epstein, 2007) Every count-
able non-amenable group has continuum many
actions (on standard Borel probability spaces)
up to orbit equivalence.

Her proof does not appear to adapt show the
analogous statement for Borel reducibility.

Question If Γ is a countable non-amenable group,
must it have continuum many Borel actions (on
standard Borel spaces) up to Borel reducibility?
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It is not at all clear how to tackle this problem,
but there might be some glimmer for optimism
given recent history. On the other hand, there
is a whole sequence of open questions relating to
the notion of hyperfiniteness where the situation
appears much more obscure.

Definition An equivalence relation E is hyper-
finite if there are Borel equivalence relations

F0 ⊂ F1 ⊂ F2 ⊂ ...

with each Fn having all its classes finite and

E =
⋃

n∈N

↑ Fn.

Perhaps the canonical example of this is E0.

Definition E0 is the equivalence relation of
eventual agreement on infinite binary sequences.
So for ~x, ~y ∈ 2N

~xE0~y

if there is an N ∈ N such that for all n > N
we have xn = yn.
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Proposition 0.11 (various authors) For E
a countable Borel equivalence relation the fol-
lowing are equivalent:

1. E ≤B E0;

2. E is hyperfinite;

3. there exists a Borel action of Z with E =
EZ.

Theorem 0.12 (Ornstein, Weiss) If Γ is a
countable amenable group acting in a mea-
sure preserving manner on a standard Borel
probability space (X,µ), then there is a conull
X0 ⊂ X such that EΓ|X0

is hyperfinite.

One doesn’t even need the action to be mea-
sure preserving.6 With respect to any Borel
probability measure, one can always go down to
a measure one set on which EΓ is hyperfinite.

6The first place I have seen it observed is in some work by Kechris, but I don’t know when it was first observed
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I think it is fair to say that in the measure
theoretic context hyperfiniteness is well under-
stood.

In the Borel context, we have two theorems,
the first of which builds on a proof by Benji
Weiss for finitely generated abelian groups.

Theorem 0.13 (Jackson, Kechris, Louveau)
If Γ is a finitely generated nilpotent by finite
group acting in a Borel manner on a stan-
dard Borel space X, then EΓ is hyperfinite.
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The second theorem has a proof which largely
occupies the entirety of a fifty page paper, and
is perhaps the most technical difficult argument
in the whole field.

Theorem 0.14 (Gao, Jackson) If Γ is a count-
able abelian group acting in a Borel manner
on a standard Borel space X, then EΓ is hy-
perfinite.

So much for the good news, here is the un-
settling part: Their proof gives no hint what-
soever that one may be able to prove this for
all amenable groups. In fact, even extending to
nilpotent groups seems technically infeasible.

On the one hand, we do not have any real
evidence to think Ornstein-Weiss goes through
in the Borel context. On the other hand, we
know that measure theoretic counterexamples
do not exist. This may suggest the need for
new techniques.
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Question If Γ is a countable amenable group
acting in a Borel manner on a standard Borel
space, must the resulting orbit equivalence rela-
tion EΓ be hyperfinite?

Although this is perhaps the question right
now, which would receive the most enthusias-
tic response among set theorists working in the
field, there is another question for which a pos-
itive answer would have far reaching structural
consequences for Borel equivalence relations un-
der ≤B.

Question Let G be an abelian Polish group
acting in a continuous manner on a Polish space
X . Suppose EG is Borel reducible to a count-
able Borel equivalence relation. Must EG be
hyperfinite?

27


