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§0. Bordering on the obvious

It goes without saying that every mathemati-
cal problem has a solution. Maybe there might
be technical difficulties in multiplying

2, 300, 244, 472, 363.01123

(i.e. some really large number) by

113, 456, 646, 543, 245, 764, 342.3436

(i.e. some even larger number), but in principle,
with enough care and effort we could compute
the answer.
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In some cases there might be technical issues
involving the fact that we cannot write down a
precise solution in a finite number of symbols.
For instance

√
34 = 5.830951895...

(the decimal expansion extends for infinitely many
digits), but there is an exact solution which up
to any desired degree of accuracy can be calcu-
lated.

There are more subtle versions of the same
issue, such as the “three body problem.” But
those are technical issues based on our ability
on our ability as finite, imperfect beings to cal-
culate or represent solutions.
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Fundamentally, though, there will be a solu-
tion or answer to every mathematical question.

We may or may not be able to calculate the
right answer, but there will be a right answer.

In some sense this is so obvious as to not merit
explicit statement, or even conscious recogni-
tion.

It is just obvious.
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And also completely false.

In this talk I want to describe some mathe-
matical problems which even in principle do
not have a a solution.

I will describe when they were discovered.

Indicate why the existence of unsolvable prob-
lems, far from being surprising, was inevitable.

And go on to suggest that in some sense this
phenomena of unsolvability is desirable.
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§1. Back in the days of innocence

In the Paris conference of the International

Congress of Mathematicians in 1900, David
Hilbert proposed a list of 23 seminal mathemat-
ical problems.

The first of these referred to Cantor’s contin-

uum hypothesis.

In simplified language, this relates to the con-
cept of cardinality or size for infinite objects.
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There is a precise mathematical notion of count-

ing the size of an infinite set such as the natural

numbers,

N = {1, 2, 3, 4, ....},

the integers,

Z = {...,−2,−1, 0, 1, 2, ...},

or the real numbers,

R = {x : x has an infinite decimal expansion}.

It turns out that N and Z have the same car-

dinality, but R has strictly larger cardinality.
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Hilbert’s first question begins with:

The investigations of Cantor on sets of

points [i.e. real numbers] suggest a very

plausible theorem, which nevertheless,

in spite of the most strenuous efforts,

no one has succeeded in proving.

And from there he goes on to describe Cantor’s
hypothesis that R has the smallest possible in-
finite cardinality above that of N.
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In 1963, following earlier work of Gödel, Cohen
established that Cantor’s hypothesis is formally

undecidable. If you like, intrinsically unsolv-

able.

In rough and somewhat simplistic terms this
amounted to proving that no valid mathemati-
cal argument can be given to establish Cantor’s
hypothesis as true and yet equally no mathe-
matical argument can be given to demonstrate
it false.

In some ways this is the most celebrated exam-
ple of a formally unsolvable mathematical prob-
lem. However there more important issue is not
this celebrated question turned out to be unde-
cidable.

The important issue is that undecidable prob-
lems are ubiquitous.
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§2 The tenth Hilbert problem

In this problem he asks for a

process according to which it can

be determined by a finite number

of operations whether [an equation
with integer coefficients] is solvable

in rational integers,

where here a rational number refers to a frac-
tion of the form

n

m

for n,m in Z = {...,−2,−1., 0, 1, 2, ...}.
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Here are two quick examples of such equations.

x2 = 2.

There are exactly two solutions.

x =
√

2

and
x = −√

2.

It has been known from long before the time
of Christ that neither of these are rational num-
bers, and hence here no such solution is possible.

On the other hand

x2 + y2 = 25

admits the solution x = 3 and y = 4.
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Of course the phrase finite number of oper-

ations is necessarily someone vague. The cus-
tomary modern reading is that Hilbert was im-
plicitly asking for an algorithm, of the kind
which could be programmed into a computer,
for determining whether an equation of the indi-
cated type has a solution over the rational num-
bers.

Here Matiyasevich showed in 1970 that, con-
trary to Hilbert’s implicit expectation, no such
algorithm is possible.

In essence his negative solution was based on
what is known in theoretical computer science
as the unsolvability of the halting problem.
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§3 The halting problem

Sad but true. Sometimes our computers sim-
ply crash. They sit there endlessly churning
their wheels, never coming to a conclusion, never
halting some endless process.

How long should one wait? As a practical mat-
ter most of us are simply going to unplug and
reboot when it is sitting idle for more than 5 or
10 minutes. Theoretically, though, there is no
upper bound on how long it might take for the
computer to find a way to complete its internal
tasks and come back to life.

Thus one might fantasize about having a kind
of meta-program, or guardian program attached
to each copy of Windows or Linux which would
be able to make predictions regarding when a
computer program will eventually halt with some
output – as against endlessly spinning its wheels.
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Definition A Turing machine is a machine
with finitely many states and operations equipped
with an infinitely long memory tape and an in-
finitely long input tape and an infinitely long
output tape.

On the memory tape it is able to write and
read two symbols, “0” and “1”.

It is only able to read the symbols on the input
tape, but we for our part are able to write down
any finite string of 0’s and 1’s and present those
to the Turing machine as the input on some
computation.

Finally, the machine is able to write on the
output tape, which we take as the output for
our requested calculation.
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The definition just above is necessarily some-
what vague – at least for the time of this pre-
sentation.

However each part can, with sufficient time
and effort, be made precise, and the critical as-
pect of this definition is that the Turing machine
itself is a finite object.

Thus in principle it could be represented or
encoded by a string of finitely many symbols.

Indeed if we are sufficiently careful, it can be
represented with a finite string of 0’s and 1’s.
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Theorem There is no Turing machine which
can determine which Turing machines will even-
tually halt

In order to give the proof of this theorem, we
would need to spend time making the concepts
much more precise, but it is possible to give a
rough idea of proof.

Keep in mind that every Turing machine can
be encoded by some finite sequence ~s of 0’s
and 1’s. Thus we can write M~s for the Tur-
ing machine corresponding to the finite binary
sequence ~s.
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Suppose we had some master Turing machine,
M , which given a description of a Turing ma-
chine ~s and a possible input ~t will output 0 if
the computer M~s corresponding to ~s will halt
on input ~t and output 1 otherwise.

Then from M we could form a new Turing
machine N which on input ~s halts with value 0
if the machine M~s presented with ~s halts with
value 1 and otherwise outputs 1. The key thing
here is that N will halt on every input.

But the problem is that N will itself be equal
to some such M~s. Yet N ’s output on this ~s

will be different to the output of M~s, with a
contradiction.
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§4 The Gödel incompleteness theorems

There was a certain view point which comes
across in some of Hilbert’s philosophical writ-
ings. To some extent it is implicit in both the
tenth Hilbert problem, mentioned above, and
the second Hilbert problem on the consistency

of arithmetic.

It is a view which was ultimately shattered by
the Gödel incompleteness theorems.
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At the cost of somewhat simplifying his posi-
tion, here is a brief summary in four principles.
The fourth of these roughly corresponds to the
second Hilbert problem.

1. The methodology of mathematics can be enu-
merated in finitely many principles of reason-
ing.

2. A correct mathematical proof consists of a
sequence of statements, each of which can be
mechanically verified to follow from the ear-
lier statements and our finite list of principles.

3. Those principles never lead to a contradiction
or any obviously absurd statement.

4. Every mathematical statement involving fi-
nite objects can be either proved or disproved
using our finitely many principles.
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That deceptively seductive manifesto was ex-
actly the target of Göel’s first incompleteness
theorem.

This can actually be seen from unsolvability of
Halting problem.

Although in this talk I have been rather loose
with the definitions, those four principles can
be made mathematically precise, and Gödel’s
achievement was to show that not only did the
formal system of mathematical reasoning Hilbert
had in mind fail to satisfy those principles, but
there is no formal system which does.
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The point is that a formal mathematical proof
is a finite object and a Turing machine could
be designed to verify whether a finite object
actually corresponds to a correct formal proof.
Thus if one also accepts that every mathemat-
ical statement of the appropriate kind is either
provable or refutable, then we could design a
Turing machine which when presented with a
mathematical statement concerning finite ob-
jects could determine whether the statement was
provable or refutable, and hence true or false.

For instance, given some burning mathemati-
cal question, such as “Is the twin prime conjec-
ture true?” the Turing machine would succes-
sively write down all lists of finitely many math-
ematical statements, verify in turn whether they
were a proof, and stop when one of them either
proves or refutes the conjecture.
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In this way we would have a kind of Master

Mathematician Turing machine. Any question
could be answered, simply by waiting until the
machine finally returns an answer after examin-
ing all possible proofs.

However the statement that the Turing ma-
chine M~s halts on input ~t is itself a statement
about finite objects.

Thus our Master Mathematician would also
be able to determine in a finite number of time
whether the Turing machine M~s halts on input
~t.

Which is exactly to say that it could solve the
halting problem – and the halting problem is
not solvable in that sense.
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§5 Effectiveness of solutions

Previously we discussed the idea of Turing

machine as a kind of mathematical idealization
or explication of the concept of computer. The
notion of what is computable then becomes an
issue of whether we can design a Turing ma-
chine which is certain to eventually halt with
the correct answer as its output.

As a practical matter, this is less than en-
thralling. We would probably look askance at a
computer which took a thousand years to com-
plete the simplest task. We want something to
be not just computable, but effectively com-
putable.

There is a generally accept notion of what it
means to be effectively computable
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Definition Let {0, 1}<∞ denote the collection
of all finite binary strings. For ~s in {0, 1}∞ we
let lh(~s) denote its length.

For instance

lh(010001) = 6

while

lh(110) = 3.
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Definition A function

f : {0, 1}<∞ → {0, 1}<∞

is said to be in P or polynomial time com-

putable if there are constants

k, n

in N and a Turing machine M such that for
every ~s in {0, 1}<∞ we have that M halts with
output

f (~s)

in fewer than

k · (lh(~s))n

seconds.
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This definition of polynomial time is a rather
subtle way of drawing out the idea of effectively

computable. The polynomial bound could be
very poor, and it might be far in excess of the
time we are willing to wait.

In defense of the definition, to start analyzing
the concepts mathematically we probably want
a notion which is not dependent on how long it
takes currently with existing hardware to cal-
culate a function. The definition of polynomial
time is essentially hardware independent.

This in turn suggest a kind of modern day
question, asking for an analogue of the Gödel
incompleteness theorems.
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A potentially broader class of functions than
those in P are those which are computable and
whose output can be verified in P . That is to
say, those functions

f : {0, 1}<∞ → {0, 1}<∞

for which:

1. There is a Turing machine M which can com-
pute f (~s);

2. and there is another Turing machine N which
given ~s and ~t can compute in polynomial time
in lh(~s) whether f (~s) equals ~t.

Here one is led to the question of whether ev-
ery function of that form is in fact in P . That
is to say, does this concept reduce to the previ-
ous notion. This is basically the notorious open
question of whether P equals NP .
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In some very loose sense, P 6= NP would rep-
resent a modern version of the incompleteness
phenomena uncovered by Gödel and the unsolv-
ability of halting problem.

Note there is an asymmetry running through
all the examples considered so far.

Once we have a possible mathematical proof
of say the twin prime conjecture, the verifica-
tion that it is actually a proof should be routine
and mechanical. The Gödel incompleteness the-
orems assert, among other things, that there is
no mechanical procedure for determining in ad-
vance existence of a proof.

Once we have a proposed integer solution to
some sequence of equations, it is mechanical to
verify whether it is in fact an actual solution.
Matiyasevich’s negative solution to the Hilbert
problem asserts that there is no mechanical pro-
cedure which in advance can find a solution.
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Once a Turing machine halts in a computation
we can be happy with the outcome, but the un-
solvability of halting problem states that there
is no way we can mechanically determine in ad-
vance whether the machine will in fact eventu-
ally halt.

If P 6= NP then there is a class of problems
where once we have a proposed solution we can
effectively verify whether it is an actual solu-
tion, but in advance there is no way to effec-
tively find a solution.
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So much for the analogy, now for the crucial
difference.

Once upon a time it might have been nice to
have been able to solve the halting problem.
Maybe Hilbert would have been overjoyed with
a positive solution to his tenth problem. Maybe
many mathematicians were disappointed in Gödel’s
demolition of the Hilbert program.

But, right now, as the world presently stands,
it would be an absolute disaster of the highest
order if P were to turn out to be equal to NP .
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§6 Public key encryption

All of internet commerce and much of the world’s
military uses public key encryption, which in
some sense tries to exploit a supposed gap be-
tween P and NP .

In the specific form of internet banking, it can
be summarized in the following way.

1. My computer wants to send information down
the internet which encodes my credit card to
a purveyor which sells goods through a web
site.

2. Any information that passes between us goes
through the internet and can potentially be
accessed by other computers on the web.

3. Thus the purveyor provides some informa-
tion, a public key, which I can use to encrypt
my credit card.
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4. This is done in such a manner as:

(a) My computer can encrypt the number ef-

fectively;

(b) the company at the other end can effec-
tively, which is to say in P time, decode
the communication I have sent them based
on knowing the solution to some NP prob-
lem;

(c) an eavesdropper on the world wide web
might be able to access the public key and
my message back to the purveyor, but will
not be able to decode my card number in
polynomial time.
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The most commonly used form of public key
encryption is RSA encryption. This roughly
works as follows:

1. The purveyor chooses some sequence of prime
numbers, p1, p2, ..., pn.

2. They then multiply them together to get k =
p1 ·p2... ·pn. This can be done in polynomial
time. (That is to say, polynomial number of
seconds in the lengths of the binary represen-
tations of the indicated primes.)

3. Then they transmit k to me through the in-
ternet – where it can be potentially read by
an eavesdropper.

4. I use k to encode the credit card number and
transmit it publicly back to the purveyor.

5. Using p1, ...pn the purveyor can decode the
credit card number in polynomial time.

However the whole security of the process rests
on the reconstruction of p1, ...pn, the prime fac-
tors from k being in P but not NP .
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§7 Summary

The incompleteness phenomena was unpleas-
ant, even shocking, when uncovered in the first
part of last century.

From the perspective of modern day mathe-
maticians, it appears absolutely inevitable.

Its modern day variant or analogue would be
the statement

P 6= NP,

which not only now seems plausible, but highly
desirable.
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