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Abstract

We show that every countably infinite group admits a free, continuous
action on the Cantor set having an invariant probability measure. We also
show that every countably infinite group admits a free, continuous action
on a non-homogeneous compact metric space and the action is minimal
(that is to say, every orbit is dense). Tn answer to a question posed by
Giordano, Putnam and Skau, we establish that there is a continuous,
minimal action of a countably infinite group on the Cantor set such that
no free continuous action of any group gives rise to the same equivalence
relation.

0 Introduction

In this paper we consider various dynamical problems which are well understood
in the Borel and measure-theoretic contexts, but less explored in the case of
continuous actions on zero-dimensional compact metric spaces.

Recall that every non-empty zero-dimensional compact metric space either
has an isolated point or is isomorphic to Cantor space. Since we will be consider-
ing continuous actions on such spaces, along with the natural assumptions that
there is more than one orbit and af least one of the orbits is dense, we may al-
ready dismiss the possibility of any isolated points. Thus from this point of view
the topological dynamics of zero-dimensional spaces reduces to the dynamics of
continuous actions on Cantor space.

Note moreover that the decision to work with zero-dimensional spaces min-
imizes the topological contribution of the space itself. The homotopy and ho-
mology is necessarily trivial. Cantor space is homogeneous — which is to say, the
full homeomorphism group acts transitively. There is a canonical basis for the
space, any two members of which are homeomorphic. Tn this respects it resem-
bles the situation of standard Borel spaces, where any two uncountable Borel
sets are Borel isomorphic and the Borel structure itself is extremely malleable.

IPartially supported by NSF grant DMS 0140503.



Thus, since the topology is in itself trivial, all the complexity comes from the
action of the group itself.

Throughout this paper the term countable group will mean a countably in-
finite group.

Our first result (Section 1, Theorem 1.1) is to show that any countable group
admits actions in the given class, and that one may further find an invariant
measire.

Theorem 0.1 Any countable group G admits a continuous and free action on
Cantor space with an invariant Borel probability measure.

Appealing to Giordano and de la Harpe at 3.1 this gives a new characteri-
zation of amenability.

In answer to a question from Giordano, Putnam, and Skau, we prove (Section
4, Corollary 4.2) that there are equivalence relations arising from actions in our
class which cannot be realized as arising from free actions.

Theorem 0.2 There is a continuous, minimal action of a countable group T
on Cantor space which cannot be induced by a continuous free action of any
countable group.

This can be viewed as a topological version of the Adams counterexample,
to the effect that there are Borel actions of countable groups on standard Borel
spaces (with infinite orbits) with orbit equivalence relations which are not in-
duced by a free Borel action of any group. This could equally be viewed as an
analogue of Furman’s much deeper result that there are measurable actions of
countable groups (with infinite orbits) whose orbit equivalence relation cannot
be realized by an (essentially) free measurable action of any group.

We also obtain one result by starting with a free continuous action of a
countable group on Cantor space and lifting to a kind of extension of the original
action. Thus while the next result (Section 2, Theorem 2.1) does not literally
mention actions on Cantor space, the argument necessarily makes use of such
ideas.

Theorem 0.3 Any countable group admits a free, continuous, minimal action
on a non-homogeneous compact, metric space.

1 Free actions and invariant measures on the
Cantor set

Throughout this section G is a countable discrete group with identity denoted by
e. On the notational side we will, whenever convenient, write (X, G, a) meaning
the continuous action of G on the topological space X by the homomorphism
o : G — Homeo(X). Throughout the text, when referring to an action we
shall mean a continuous action as defined above.

The following will be our main goal in this section.



Theorem 1.1 Let G be a countable, discrete group and let X be the Cantor
set. Then there ezists a free, continuous action (X, G, «) having a G-invariant
probability measure.

Remark 1.2 The existence of a free, continuous action on a compact metric
space was previously established by R. Ellis [2] by a construction involving
the Stone-Cech compactification. (Although the Stone-Cech compactification
yields a non-separable space, one obtains a compact metric space by a standard
modification.) Later Veech [8] and Pestov [7] showed similar results for locally
compact groups as well as for other topological groups. However, all of these
constructions give no information about invariant measures. Our construction
yields invariant measures, and is an elaboration of an idea suggested to us by
S. Mozes. We want to express our gratitude to him.

Let a countable discrete group G be given. We will divide the discussion into
two parts. First we construct a free action of G on the Cantor set. Secondly, we
show that our construction naturally yields an invariant probability measure.

Fix some g € G, and let {g) denote the cyclic subgroup of G generated by g.
Choose a sequence {7;}ier, in G, where the index set I, is either {0,1,2,...,n},
or {0,1,2,...} such that

That is, we write GG as a disjoint union of left cosets of the cyclic subgroup (g).
We set 79 = e independent of the choice of g. For every aperiodic g € G (i.e.
(gy is infinite) fix a Cantor minimal system (X, T,), and, for later use, fix a
T,-invariant probability measure p,. In the case where (g) is finite, say of order
m, we let T, be the cyclic permutation on m elements, and we let p, be the
T,-invariant probability measure taking the valie % at each point. Form the
set
v,= I X,

and topologize it by giving it product topology, hence, Y, is a Cantor set. (Recall
that all Cantor sets are homeomorphic.) Define

a? : G — Homeo(Yy)

by, for v € G,
(afw) () = T3 w(2),
where 7 and n are uniquely determined by the condition
-1 _ n
YO =g -

It is straightforward to verify that af is well-defined and is a homeomorphism

on Y,. Tn addition we have the following:

Lemma 1.3 of is an action of G on Y,.



Proof Let v, ' be any pair in G, and w any element in Y,. We must show that
g N :
(af o af ) (w)(j) = (), w)(4)

for all j € I,. We have that v~ 7; = 7,9 and 7’_1% = v;g", for some i,k € I,
and m,n € 7. This implies that

—1 -1 _
)" o= A )

Hence,

(efoaf)w)i) = (ef(afw

and

(afw)(§) = T (w(k)).

¥y
By the choice of T}, in the periodic and non-periodic case, respectively, this is

well-defined, and we get the desired equality. O
Define X = HGY and the action « : G — Homeo(X) by a = H ad.

g€
Also, let p be the probability measure p = II ( IT pg) on X. Then we have all

geG i€l
the necessary ingredients to prove Theorem 1.1.

Proof of Theorem 1.1. It is clear that « is an action of G on X. We prove
that the action is free. Let v € G, € X, such that o, (z) = z, and suppose y #
e. Then, in particular, a(z(y)) = (7). Let w = z(y) € Y,. By assumption
aJ(w) = w, and especially (a7 (w ))( ) = w(0). By definition of a7 we have that
(a2 (w))(0) =T (w (0)) since 7~y = y0y~!, where v by our above notation
denotes e. Hence, T (w(0)) = w(0), and so T 4 (w(0)) = w(0). By construction,
T, has no fixed points, and so we get a contradiction, thus proving that the
action is free.

We now turn to showing that u is G-invariant, and, hence, that M (X, G) is

non-empty. It is enough to consider v, = H pg under the action of G on Y,. Tn
fact, if v, is invariant for every g € G, then so is the product measure = 1II L vy
g€

on X — this is easily verified. Solet g € G, and A C Y, be a Borel rectangle such
that A projects to proper Borel subsets of Xy ona ﬁnlte number of coordinate
places, say on {i1,is,...0x y C I,. That is, m;,, (A) = A;, , for some Borel subset
A;,. ¢ X,, where 7; is the projection to the i-th copy of Xg,andm =1,2, .., k.
Otherw1se when i ¢ {i1,is,...i5}, m(4) = X,. Fixy € G Then (af)~'(A)



will again be a Borel rectangle such that (af)~'(A) at coordinate position jn,
is T%n A, according to the equation y~1v; =+, g%, where m = 1,2, ..., k.
Hence, by T,-invariance of p1,, we have

vy (A) = Ly (TFm A, ) = T py(As,) = vy (A).

This proves the result. |

Remark 1.4 First we observe that, for an aperiodic ¢ € G, the choice of
(X4,Ty) can be made quite arbitrary. The proof rests on the fact that T, has
no fixed points. In fact, whenever ¢ is aperiodic, we may choose X, = {0,1}
(discrete topology), (which of course is not Cantor), with T, defined by T'(0) = 1
and T'(1) = 0, and where g, is such that py({0}) = pg({1}) = 1. The space X
that we construct in Theorem 1.1 will still be a Cantor set. However, to tackle
the still open problem whether there exist a free, uniquely ergodic action, it
may potentially be useful to have at ones disposal Cantor minimal systems with
special properties, e.g. uniquely ergodic with minimal self-joinings. (Confer
Proposition 1.8.)

Corollary 1.5 For every countable and discrete group G there exist a free and
minimal action of G on the Cantor set.

Proof Let (X,G, @) be a free action of G on the Cantor set X according to
Theorem 1.1. Choose, by a Zorns lemma argument, a closed G-invariant subset
7 of X such that the restriction of the action of G on 7 is minimal. This
subaction gives the result, since freeness is obviously preserved, and freeness
and minimality of the action implies that 7 is again a Cantor set. O

Remark 1.6 The existence of a G-invariant probability measure y on the large
space X, guaranteed by the construction in Theorem 1.1 might be ”lost” when
moving to a minimal subaction. This is the case when 7 is "thin” in X (i.e.
u(Z) = 0). However, if G is amenable there does exist a G-invariant probability
measure on Z, (but this is not necessarily induced by the measure y in Theorem
1.1).

Let G be given and X be as defined above the proof of Theorem 1.1. Let, for
every g € G, my : X — Y, be the projection onto the component Y, determined
by g. Also, we let m; : Y, — X, be the projection to the i-th copy of X, in Y,
and define 7f : X — X, by n{ = m; o w,. We have the following lemma.

Lemma 1.7 Let G be a countable discrete group and (X,G,«) as constructed
above. Fiz g € G andi € I, and put y = %9—1%—1. Then the following diagram
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Proof The top square commutes by definition of the action «. For the lower
square we have that m;00d (w) = af (w)(i) = Ty(w(i)) since y~1vy; = Yigy oy =
;9. This proves the result. O

We will now restrict our discussion to the case where the systems (X,,T,)
used to build X are uniquely ergodic for every ¢ € G (i.e. X, has a unique
T,-invariant probability measure) — say with invariant measure p,. That is,
M(X,,T,) = {py} for all ¢ € G. Also, given a probability measure v on X we
define the marginals of v to be {(7{)*v}ec ic1,-

Proposition 1.8 Let v be a G-invariant probability measure associated to (X, G, ),
where (X, G, «) is constructed as above with uniquely ergodic (X,,T,) for every

g € G. Then the marginals of v are {ug}gea icr,, where M(X,,Ty) = {pg}-
That is, (7{)*v = p,, for every g € G — independent of i € T,,.

Proof Fix some g € G and ¢ € I;. Let A be a Borel subset of X,. Setting

v =791y, we have by Lemma 1.7 that

(7)) T 4) = v

= 14

= 14

(
(
= o
(
= o

= (=) )](4).

Hence, (7)*v is Ty-invariant on X, and so, by unique ergodicity of (X,,T,)
we must have that (7f)*r = p,. O

We would like to construct a free continuous action of any countable group
(G on the Cantor set X that is uniquely ergodic, i.e. M (X, ) consists of one
element. However, this remains to be done and Proposition 1.8 is as far as we
got at this point.

We end this section with a concrete example of a free action which we will
need in the next section. It is not difficult to show that the construction de-
scribed in this example falls under the general scheme outlined in the proof of
Theorem 1.1.



Example 1.9 Fiz a countable group G and g € G with g # e. We first consider
the Bernoulli shift of G on {0,1,2}%, so that for h,ho € G and f € {0,1,2}¢
we define h- [ by

h- f(ho) = f(h™"ho).

We let X, be the set of all f: G — {0,1,2} which has

f(h) # f(hg)

all g. This set is closed and invariant, and it can be quickly seen to be non-
empty — note that in the case (g) has odd order, we really need to consider
/G —{0,1,2} rather than just f : G — {0,1}. For any f € X, we have

g-fle)=Flg) # fle)

g f#ES
and g acts freely on X,.
Thus by passing to

x =[x,

gte

we obtain a zero dimensional compact space on which G acts freely. We finish

by passing to some minimal
K CX.

In conclusion G acts continuously, freely and minimally on K.

2 Minimal non-homogenous actions on compacta
We want to prove the following:

Theorem 2.1 Every countable group acts continuously and freely on some com-
pact non-homogeneous metric space all of whose orbits are dense.

We say that a topological space is non-homogeneous if the entire homeomor-
phism group does not act transitively. Recall that an action is minimal if every
orbit is dense. We will use the generic term G-space for an action (X, G, a).

For the remainder of this section we fix a countable group G and K a com-
pact, zero dimensional, minimal G-space according to Example 1.9. We let
{z,, : n € N} enumerate one of the orbits.

We are going to somehow extend the action of G on K to an action on a
closed subset C C K x [-2,2] = {(z,y) : x € K,y € R, -2 <y < 2}. Above
each x € K we will add a small fibre in C; most of the time the fibre will be
trivial, but above any of the z,,’s there will be a small arc segment. The length
of the arc segment above x,, will go to zero as n — 0o.

We prove Theorem 2.1 through several steps - starting with the following
result.



Lemma 2.2 There exists continuous f1 : K \ {z1} = R>® such that
(a) f1(z) = oc asx — x1;
(b) for all c € [-1,1],€ > 0,8 > O there exists x with d(z,z1) < § and

[sin{f1(x)) — ¢| < 6.

Proof Partition K \ {x1} into non-empty clopen pieces, (A, )nen, with each
An CHy : d(y,z1) < 27"}; note we can do this since the assumptions on the
action entail z; non-isolated. Let {g, : n € N} enumerate Q. At each n choose
an € Ay, b, € R0 so that

1

Y _gl<2
d(an,;r:)—{—bn) anl <

|sin(

Because of the way in which we partitioned the space, the function
YK\ {z;} = R>®

x> theb,stx e A,

is continuous, and hence so i

fi:K\{z} > R>?®

1
= yY(z) +
Y0 fa
is continuous, and by our choices of the a,’s, b,’s exactly as required by the
lemma. O

At each n we let g, € G be the unique element of G with g, - 1 = z,. We
then define for each n a continuous

fn: K\ {z,} - R
by
fnlz) = filg, " (2)).

Note for future reference that if ¢ € G has g - 4 = z,,,, then g = gmgzl, and
hence for all = #

fe@) = filgr @) = filgn gmgy - @)

= fm(gmgz_l ) = fm(g - 7).
Moreover we again have at each ¢ € [-1,1],e > 0,5 > 0 some z with d(z,z1) < §
and [sin(f,(x)) — | < 6.
Now to describe the fibres. Above each = € {z, : n € N} we add just the
point (z,y) where
y="y 2 "sin(fn(2)).

neN



Above points of the form z, we add all (z,,y) where

y=2""w+ Z 27 sin( fr, (x))

m#n

for some w with —1 < w < 1.

Now to define the action. For z ¢ {z, : n € N} and (z,y) € C we let
g-(z,y) = (g9-x,2) where z is the unique point with (¢-z,2) € C. On
the other hand, for x = z, and y = 27w + 3 27"sin(fm(zn)) we let
g (zn,y) = (x¢,2) where g - 2, = zp and

z=2" w4 Y 27 "sin(fm ()

m#L
Lemma 2.3 The resulling G-action is continuous.

Proof Fix ¢ € G, (r;,y:): in C, with (r;,y;) = (r,y). We want to show that
g-(ri,y;) = ¢g- (r,y). We may confine our discussion to the cases that either
every r; € {z,, : n € N} or every r; ¢ {z, : n € N}. After that there is a further
split into subcases depending on the circumstances of r.

We fix (z;)i, 2z so that each g - (r;,y;) = (9 7i,2:) and g - (r,y) = (g - 7, 2).

Case(1) Each r; ¢ {z,, : n € N}.
Subcase(la) 7 ¢ {z, : n € N}.
Then since each f,, is continuous on K\ {z,, : n € N} and since g-r; = g-r,

si= 3 2 sin(f(g i) = 2= 3 27 Msin(fulg 1))

mEN mEN
cgeriz) = (g, 2).

Subcase(1b) r = z,,, some n.
Let g -z, = z. Wesuppose y =27"w+ > 27"sin(fm(zxs)), and hence
y=2"tw+ > e 27sIn(fin (). Since y; — y we have

> 2 msin(fm(ri)) = 27w Y 27" sin(f(70));
m. m#n
and then since r; = z,, and each f,, is continuous away from z,,,
sin(fm (rs)) — sin(fm (zn))
for m # n. Putting these statements together we have
277sin( i (1)) = 27w,

Recalling the equivariance assumptions on the functions {f,, : n € N} we have
therefore
27sin(fu(g - r4)) = 27" sin(fa(rs) = 271w,



For m # ¢ we immediately obtain

27"sin( frm (g - 73)) = 27 sin( fr (@)
since g - r; — g -, = x; and each f,, is continuous away from x,,,. Hence
2= 27"sin(fm(g 1) 2 me=2"w+ Y 27"sin(fm(g 7)),
m m#L
which completes this subcase.
Case(2) Each r; € {2, : n € N}. Let r; = x,,(;y and
yi = 27" w; + Z 277sin(fr (@n(2))-
m#n(i)

We let 71(4) be defined by g-,(;) = #5(;). We may replace each r; by s; & {z,, :
n € N} where each s; is close enough to z,(;y to ensure not only do we have

d(xn(z)ﬂgl) < 27i:

| 2 s (s) — Y 2 fnage)] < 2
m#£n(i) m#£n(i)
but also '
d(zh (i), g 8:) <277,
| Y 2 sin(fm(g e s)) = Y 27 sin(fn(wa))| <27
m#£N(E) m#£N(E)
appealing to the assumptions on (f,), we can do this so that we additionally
have

|sin( £y (si)) — wi] <277,
and therefore by the invariance properties of these functions
|Sin(ffz(z‘) (g-8:)) —wi| < 2%,
At each 7 we let

ws = 3 27sin(fn(s1),
vi= 32 "sin(fng - 5:))-

We have set things up so that (s;,u;) = (ry), g (85, u;) = (g 8i,v;) and if
(g-si,v;) has a limit then that point is the limit of g- (,,(;y, ;). But now case(1)
indeed gives that since (s;,u;) = (z,7) we have

(g Siﬁvi) —g- (Jf,’l“),

thereby completing the proof in case(2), and thus the proof of the lemma. O

10



Lemma 2.4 FEvery orbit is dense.

Proof Fix (z,y),(z',y") € C. We want to find (g,,(;)): with

In(o) * (,9) = (,1).
Case(1)Both = and z' lie outside {z,, : n € N}.
This follows more or less automatically.
Case(2) z ¢ {z,, : n € N} and 2’ = =z, for some n.

We will have
y' =27+ Y 27 Msin(fm (@),

m#n

some w' € [—1,1]. Then as we saw in the proof of the last lemma, at each £ € N
we can find 7, ¢ {z, : n € N} such that

| Z sin(fm (24)) — Z sin(frm (re))| <2747

m#n m#n

|w' = sin(fa(re))] <271,

and hence for

ye =y 27 "sin(fm(z0))

we have |y, —y'| < 27¢. Since case(1) shows that each (z¢,y,) is in the closure
of the orbit of (z,y), and since (z¢,y¢) — (2, y"), we have that (z’,y") is in the
closure of the orbit of (x,y).

Case(3)

We finally consider the case of z € {z,, : n € N}. In light of case(2), we may
assume ' ¢ {x, : n € N}. Fix § > 0; we want to show some g - (z,y) = (2,9)
has d(z,2') < § and |§ —¢'| < §. By assumptions on the G-space K, we may
find g € G such that

d(g-z,z') <4,

g -z & {xm:m>logy (=) + 1},

=Sl V)

and at each m < log2(§)

Sinfon(g  2)) — sin(fn(a))] < 5.

From this it follows that if g - x = x,, then

| Z 27"sin( fr (20)) — Z 27"sin(f(x'))] < Z 2—m

m<n m<n m<n

M| S
AN
YRS

11



whilst

Hence since

we have | —y'| < £ + £ =4. O
Lemma 2.5 K is compact.

Proof We began with

Ko = {(z, 32 "sin(fm(x))) : 2 € C},

m

which is compact in virtue of being the graph of a continuous function on a
compact set. Then we added a sequence of compact sets of the form

B, = {mn} X I,

for some closed interval I,, where |I,| = 0 and each B,, meets K.

In general this kind of construction keeps us inside the class of compact sets.
O

Lemma 2.6 C is not homogeneous.

Proof Let (U,), be a basis consisting of clopen set. Note then that for any
x ¢ {x,:neN}
{Unx[-2,2|NC:2€U,}

provides a neighborhood basis at x consisting of clopen sets.

On the other hand, at any of the x,,’s no such neighborhood basis is possible
since there is a homeomorphic copy of the unit interval inside C' passing through
z. d

3 Amenability

We want to explore different characterization of amenable groups. Amenability
can be defined in several different (equivalent) ways. In the countable case it
can be stated as follows: A countable group G is amenable if, for any continuous
action of G on a compact, metrizable space X, there exist a probability measure
st on X which is invariant by G (i.e. u(gF) = u(E) for any Borel set F C X).
Giordano and de la Harpe proves in [4] that for a countable group G to be
amenable it is sufficient that any continuous action of G on the Cantor set has
an invariant probability measure. With Theorem 1.1 established we are now in
position to give the following characterization:

12



Proposition 3.1 A countable group G is amenable if and only if for any mini-
mal and free action of G on the Cantor set, there exist a G-invariant probability
measure on X .

Proof The "only if” part is obvious. Now for the ”if” part. First we establish
that, for G to be amenable, it is sufficient that there exists a G-invariant prob-
ability measure on the Cantor set for minimal actions. We do this by showing
that whenever a G-invariant probability measure exists for minimal actions then
this is also true in the general case. So suppose (7 is an action on the Cantor
set X. By a Zorn’s lemma argument there exists a closed, G-invariant subset
Y of X, such that G acts minimally on Y. Let uy be a G-invariant probability
measure on Y, and extend this to a probability measure ux on X by

px(E) = py(ENY)
for a Borel set F C X. Now, Y and X\Y are G-invariant, hence
px(9E) = py ((gE)NY) = py ((g(ENY)) = py (ENY) = px (E),

and so px is a G-invariant probability measure on X.

Now let (7 be an action on the Cantor set X. By using Theorem 1.1, pick
a free action of G on the Cantor set Z, and define an action of G on X x 7 by
g(x,2) = (gx,92) for g € G. Clearly this yields a free action on the Cantor set
(a product of Cantor sets is still Cantor), and hence, by our assumption, there
exist a G-invariant probability measure pon X x 7. Let 7 : X x 7 — X
be the projection (z,z) — 2, and define the probability measure v on X by
v=m"(n) (.e. v(E)= pu(r~1(E)) for a Borel set £ C X). By construction of
the action of G on X X Z we have that, for all g € G, mo g = gox. This means
that

v(gE) = w(x " (gE)) = plgn " (E)) = p(x~"(E)) = v(E),

for all ¢ € G and any Borel set E in X. Hence v is a G-invariant measure on
X, and so we are done. |

4 A topological version of the Furman and Adams
counterexample

In the measure-theoretic setting Furman [3] (Theorem D) proved that there
exists countable non-singular equivalence relations that can not be generated
by an essentially free action of some countable group. Adams [1] showed an
analogous result in the Borel setting. We will now turn to a construction yielding
a topological version of this.

Proposition 4.1 There is a continuous action of a countable group T on a
zero-dimensional compact space such that

(i) every orbit is dense;

13



(i) there is an invariant subspace Xo which carries a T'-invariant probability
measure and for which Er|x, is induced by the aclion of an amenable

group,

(#ii) there is a subspace X for which Er|x, admits an invariant measure
with the property that Er|x, is not p-invariant in the sense of [9].

A consequence from this is an answer to a question raised in [5]:

Corollary 4.2 There is a countable group I' acting continuously and minimally

induced by any continuous (or even Borel) free aclion of a countable group A.

The point is that the group A would have to be amenable, since it has a free
action on a probability space Xy with amenable equivalence relation; but then
Er would be “l-amenable” in the sense of [6], and in particular so would X;,
since 1-amenability goes down from an equivalence relation to its sections, and
in particular Er|x, would have to be amenable relative to any measure on the
space.

Remark 4.3 By using Adams approach it is an easy consequence of Theorem
1.1 to give an example of an equivalence relation, with countable equivalence
classes, that cannot be freely generated. However, the orbits in this equivalence
relation split into disjoint, nonempty clopen sets in the underlying space, and,
hence; is far from being minimal.

The rest of the text is devoted to proving Proposition 4.1.

In what follows, Fy = (a, b) is the free group generated by the elements ¢ and
b. For % in the homeomorphism group of a compact space metric (K,d), |
refers to the sup norm metric, sup,¢gd(z, ¥ (z)). Tn particular the canonical
Polish topology is given by the complete metric D(¢), ¢) = |[po ¢~ + | porp L.

Lemma 4.4 There is a locally finite countable group G acting continuously on
a perfect, compact, zero-dimensional space, Co,

G— HOHI(C()),

gH"ﬁg:

and there is a continuous action of Fa on Cjy,
Fy — Hom(Cy),

o= Y0,

such that

(i) every orbit is dense under the Fs action and every orbit is dense under
the GG action;
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(i1) for ¢ € {a,b} there is a sequence (¢, )nen in G such that
[$e 02! =0,
[e, o] = 0;

(iii) there is a probability measure g on Co which is simultaneously invariant
under both actions.

Proof Let H,, be a decreasing sequence of finite index normal subgroups Fs
such that for all o € Fy, o # e, there is n with ¢ ¢ H,. At each n let X, be
the space of (left) cosets of H,. F, acts in the obvious way on X,,. We let Cy
be the usnal profinite completion — so that Cy C [] X, consists of functions

f: N> X

with each f(n) € X,, and f(n+1) C f(n). We equip this with the product topo-
logical structure and the product action (- f)(n) = ¢-(f(n)). Note that indeed
every orbit is dense in this action, and that Cy is compact, zero-dimensional,
and without isolated, and hence homeomorphic to Cantor space; therefore it
suffices to find an action of a countable G on Cy such that for each o € Fy there
exist (gp) in G with

supsec, (deo (0 - frgn - ) +de, (07" - fog7 " f)) = 0.

(Here we let de, (f1, f2) be the reciprocal of the least n with fi(n) # f2(n).)

For each n and s € [[,.,, Fo/H; with s(i +1) C s(é),let Vo ={f € Co: fD
s}. Then the collection of all such V;’s form a basis for the topology. Note that
we may find homeomorphisms 7., : Vs = V; for s, ¢ of the same length which
are all arranged so that

(i) 7g,¢ 0 My s = Myt When s,¢,u all of the same length;
(i) if s’ D s,t' Dt then |y, = Te pr.

We then define a subgroup G, of Hom(Cy) at each n generated by ay, b,
defined by the specifications

(i) an-Vs=Vyif and only if a- Vs = Vi,
(ii) b, - Vs =V if and only if b- V; = V;;

(iii) in the event of a, - Vs = Vi we have a,|y, = 74

(iv) in the event of b, - V; = V; we have b, |y, = 74,.

In other words, a,, b, approximate the homeomorphisms associated to a and
b by behaving as they do at the first n-levels of the space, but then having a
purely “flat” behavior from that stage onwards.

It is easily checked that these provide the required the group of homeomor-
phism. We get the invariant measure by first instance noting that both these
actions preserve a compatible metric, and in general the isometry group of a
compact metric space is compact and in particular amenable. |
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We now let G = G *F5. We define a sequence of actions of G on the Cantor
space Cy above. For n € N we let a,, be the action given by the above indicated
action of G and for Fy we take the action suggested by identifying a with a,,, b
with b,; in other words, for ¢ € GG

an(g, ) = (@),

and for ¢ € {a,b}
an(c,z) = e, (z);

by the definition of free product, this extends uniquely to an action of the free
product G * Fs.

We also define an action aue by o (0,2) = ¥, (x) for ¢ € Fs and @ (g, ) =
Yy(z) for g € G.

Let Zs = 7/37Z, the group of addition modulo 3. We let [[yZs be the
compact group obtained by the countable product of Zs; we let Z;N be the
subgroup of elements with finite support. Note that the smaller, countable
group acts by left translation on the larger, preserves the Haar measure, and
has all orbits dense. Let 8 : Zs" x [ Zs — [ Z3 be this action.

We let T = G * Z?fN. We define actions of Zz and G on Cg X [1Z3, which
will in turn induce an action of the free product T.

The action of Z5" is easy to describe. 7-(z, f) = (z, 8(, f)). All the work is
in the second coordinate, where we take the translation action of the countable
group on the compact group from which it is hewn.

For G the situation is more complicated; there is a split in cases. First of
all, if f has no n with f(n) = 0 (the identity of the 3 element group) then we
let o« (x, f) = (oo(0, 2), f). If there is some n with f(n) = 0 then we go to the
first such n and let o - (z, f) = (an (0, ), f)-

Lemma 4.5 The action of T on Cy x [[ Zs is continuous.

Proof Define p : Cy — NU{o0}, the one point compactification of N, by p(f) =
least n with f(n) = 0 (infinity if no such n). It is easily seen that this function
is continuous and for any f, — f the homeomorphisms

Ca-)C(]

x> ay, (0,1)

approach the homeomorphism
x> a0, )
in the sup norm metric. |

We then let p; be Haar measure on Z<N. We then consider the measure
o X p1 on C' = Cy X[] Z3. The measure concentrates on pairs (x, f) where f has
infinitely many n’s with f(n) = 0. On this invariant subspace the equivalence
relation Er is induced by the amenable group G x Z?fN.
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On the other hand, for any f with no n with f(n) = 0 we let consider the
closed subspace Cy x {f} C C. The equivalence relation on this slice admits the
invariant measure obtained from g and includes the orbit equivalence relation
induced by a free action of Fy, and is hence not amenable relative to .
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