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1 The broad outline of these talks

1. The basic idea of cardinality. (At the begin-
ning at least, make very few mathematical
assumptions of the audience.)

2. Slight modifications of this concept can lead
to a spectrum of notions which resemble the
notion of size or cardinality. (“Borel cardi-
nality” or “effective cardinality”, or even car-
dinality in L(R)).

3. Some of these notions are implicit in mathe-
matical activity outside set theory. (For in-
stance the work on dual of a group by George
W. Mackey, or scattered references to effec-
tive cardinality in the writing of Alain Connes.)

4. In the 80’s set theorists such as Harvey Fried-
man, Alexander Kechris, among others, be-
gan to suggest a way to explicate this idea
around the concept of Borel reducibility
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5. The outpouring of activity in this area over
the last 15 -20 years. Su Gao, Alexander
Kechris, Alain Louveau, Slawek Solecki, Si-
mon Thomas, Boban Velickovic, among many
others.

6. Dichotomy theorems for Borel equivalence re-
lations (for instance, the Harrington, Kechris,
and Louveau extension of Glimm-Effros).

7. Specific classification problems in mathemat-
ics (for instance the finite rank torsion free
abelian groups)

8. Dynamical methods to analyze equivalence
relations in the absence of reasonable dichotomy
theorems (for instance turbulence)

9. Interactions between the theory of countable
equivalence relations and the theory of orbit
equivalence
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2 Equivalence relations and invariants

Definition Let X be a set. E ⊂ X × X is
said to be an equivalence relation if

1. it is reflexive (xEx all x ∈ X)

2. symmetric (xEy implies yEx)

3. transitive (xEy along with yEz implies xEz).

Example 1. Let X be the set of people. Let
E be the equivalence relation of having the
same height.

2. Let X again be the set of all people. Let
E be the equivalence relation of having the
same mother.

3. Let X be the set of all planets. Let E be the
equivalence relation of being located in the
same universe.
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Definition For E an equivalence relation on
a set X , a complete invariant or classification
of E is a “reasonable” or “explicit” or “natural”
function

f : X → I

such that for all x1, x2 ∈ X we have

x1Ex2

if and only if

f (x1) = f (x2).

This really a pseudo-definition, held completely
hostage to how we best make sense of “reason-
able” or “explicit”.

Part of the story are the attempts to make this
idea more precise, and this in turn connects in
with variations on the concept of cardinality
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Example 1. For E the equivalence relation of
having the same height we clearly do have a
natural classification. Namely: Height mea-
sured in feet and inches. Assign to each x in
the set of people the height measured in feet
and inches as f (x).

2. For E the equivalence relation of having the
same mother, it would likewise seem that there
is a very explicit invariant: Assign to each
person x their mother as f (x).

3. For E being the equivalence relation of being
in the same universe, the situation is not so
clear.

We could try to for instance assign to each
planet the actual universe in which they live,
but it is not clear that this is doing much
more than assigning to each x the entire set
of all y for which xEy.
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3 Cardinality

Definition A function

f : X → Y

is an injection if for all x1, x2 ∈ X ,

x1 6= x2

implies
f (x1) 6= f (x2).

In other words, an injection is a function which
sends distinct points to distinct images.
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Example 1. Let X be the set of people and let
Y be the set of all human heads. Let

f : X → Y

assign to each x its head. This is presumably
(barring some very unusual case of siamese
twins) an injection.

2. Let X be the set of all people who have ever
lived and let

f : X → X

assign to each X its mother. (Here we are
ignoring minor chicken-egg questions about
the first ever mother). This is clearly not an
injection. There are cases of distinct people
having the same mother.
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Definition A function

f : X → Y

is a surjection if for each y ∈ Y there is some
x ∈ X with

f (x) = y.

A function which is both injective and surjective
is called a bijection.

In rough terms, a bijection between X and Y
is a way of marrying all the X ’s off with all
the Y ’s with no unmarried Y ’s left over. (Here
assuming no polygamy allowed).
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Definition Given two sets X and Y , we say
that the cardinality of X is less than the car-
dinality of Y , written

|X| ≤ |Y |,

if there is an injection

f : X → Y.

Theorem 3.1 (Schroeder-Bernstein) If

|X| ≤ |Y |

and
|Y | ≤ |X|,

then there is a bijection between the two sets.

Intuitively not so outrageous. If we say that
a set has size 4, and count of the elements 1,
2, 3, 4, we are implicitly placing that set in a
bijection with the set {1, 2, 3, 4}.
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4 The axiom of choice

Definition A set α is an ordinal if:

1. it is transitive – β ∈ α along with γ ∈ β
implies γ ∈ α; and

2. it is linearly ordered by ∈ – if β, γ are both
in α, then

β ∈ γ,

or
γ ∈ β,

or
γ = β.
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∅, the set having no members, which set theo-
rists customarily identify with 0.

1 = {0}, the set whose only member is 0.
2 = {0, 1}, gives the usual set theoretical def-

inition of 2. Then we keep going with 3 =
{0, 1, 2}, 4 = {0, 1, 2, 3}, and so on.

We reach the first infinite ordinal with the set
of natural numbers:

ω = {0, 1, 2, ...}.

This again leads to a whole new ladder of ordi-
nals:

ω + 1 = {0, 1, 2, ..., ω},

ω + 2 = {0, 1, 2, ..., ω, ω + 1},

ω + 3 = {0, 1, 2, ..., ω, ω + 1, ω + 2},

and onwards:

ω + ω = {0, 1, 2, ..., ω, ω + 1, ω + 2, ...},

ω+ω+1 = {0, 1, 2, ..., ω, ω+1, ω+2, ..., ω+ω},

ω×ω = {0, 1, 2, ..., ω, ω+1, ...ω+ω, ...ω+ω+ω, ...},

ad infinitum.
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Lemma 4.1 The ordinals themselves are lin-
early ordered: If β, γ are both ordinals, then

β ∈ γ,

or
γ ∈ β,

or
γ = β.

The Axiom of Choice: (In effect) Every set
can be placed in a bijection with some ordinal.
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Definition An ordinal is said to be a cardinal
if it cannot be placed in a bijection with any
smaller ordinal.

So for instance, ω (or ℵ0 as it is sometimes
called in this context) is indeed a cardinal: The
smaller ordinals are finite.

But not ω + ω: Define

f : ω + ω → ω,

n 7→ 2n,

ω + n 7→ 2n + 1.
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The consequences of all this for the theory of
cardinality:

Every set can be placed in a bijection
with an ordinal.

The cardinals are a linearly ordered set.

This is parallel to a form of utilitarianism:
There is only one good (human happiness) and
that good can be compared in order and amount.

There is only one notion of “size” and the car-
dinals can be compared in order.
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5 Variations on the notion of cardinality

Recall that we set |X| ≤ |Y | if there is an in-
jection from X to Y .

However, it does make sense to look at paral-
lel definitions for classes of injections which are
more narrow than simply the class of all injec-
tions.

Fix Γ some class of functions (for instance, all
Borel functions, all functions in L(R)).

We might want to say that the Γ-cardinality
of X is less than equal to that of Y if there is
some injection f ∈ Γ with

f : X → Y.
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This should be compared to the problem of
classifying an equivalence relation.

Definition For E and equivalence relation on
X , and x ∈ X , let [x]E be the set of all y ∈ X
with

xEy.

Then letX/E be the set of all equivalence classes:

{[x]E : x ∈ X}.

For instance, if X is the set of all people, and
E is the equivalence relation of having the same
height, then

[Greg]E
would be the set of all people who are 5’6” tall.

X/E would consist of the set of all “group-
ings” of people where they are categorized strictly
by height.
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Then a classification of E would in some form
be an “appropriate” function

f : X → I

which induces an injection

f̂ : X/E → I

via letting
f̂ (C)

take the value
f (y)

for any y in the equivalence class C.

The assumption xEy ⇒ f (x) = f (y) ensures

f̂ is well defined.

The assumption f (x) = f (y) ⇒ xEy ensures

f̂ is an injection.

However it remains to resolve the definition of
what we should count as an “appropriate” or
reasonable class of possible functions f .
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6 The ideas of G. W. Mackey

One particular approach to theory of what should
count as reasonable functions for the point of
view of classification has been suggested by work
of Mackey on group representations dating back
to the middle of the last century.

The story now becomes considerably more math-
ematical. I will start first by describing the
problem Mackey considered, and only then the
explication of reasonable his work suggests.

Definition For H a Hilbert space, U(H) de-
notes the group of unitary operators on H .
That is to say, the set of all linear bijections

T : H → H

such that for all u, v ∈ H

〈T (v), T (u)〉 = 〈u, v〉.
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Definition ForG a countable group, a unitary
representation of G (on the Hilbert space H)
is a homomorphism

ϕ : G→ U(H)

g 7→ ϕg.

We then say that a representation is irreducible
if the only closed subspaces of H which are in-
variant under

{ϕg : g ∈ G}

are the trivial ones: 0 and H .

Let Irr(G,H) denote the collection of irreducible
unitary representations of G on H .
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Definition Two unitary representations

ϕ : G→ U(Hϕ)

ψ : G→ U(Hψ)

are equivalent, written

ϕ ∼= ψ,

if they are unitarily conjugate in the sense that

there is a unitary isomorphism

T : Hϕ → Hψ

such that at every g ∈ G

ϕg = T ◦ ψg ◦ T
−1.
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Theorem 6.1 If ϕ : Z → U(H) is an irre-
ducible representation, then:

1.H is one dimensional; and

2. there is some z ∈ C such that at every
ℓ ∈ Z we have

ϕℓ(v) = zℓ · v

all v ∈ H; and

3. two distinct irreducible representations are
equivalent if and only if they have the same
z ∈ C associated to them.

Thus we obtain a complete classification of ir-
reducible representations of Z by their associ-
ated z ∈ C. It is like we can view Irr(Z, H)/ ∼=
as a subset of C.

It turns out that a similar, though somewhat
more complicated, classification can be given for
any abelian group.
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In broad terms Mackey was led to ask: For
which groups G can we reasonably classify the
collection of equivalence classes

Irr(G,H)/ ∼=

by points in some concrete space such as C?

Before even groping towards an answer, one
might first want to make the question precise.

Mackey did make the question precise, but this
in turn requires the introduction of ideas lying
at the foundations of descriptive set theory.
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7 Polish spaces and Borel sets

Definition A topological space is said to be
Polish if it is separable and it admits a complete
compatible metric.

We then say that the Borel sets are those ap-
pearing in the smallest σ-algebra containing the
open sets.

A setX equipped with a σ-algebra is said to be
a standard Borel space if there is some choice
of a Polish topology giving rise to that σ-algebra
as its collection of Borel sets.

A function between two Polish spaces,

f : X → Y,

is said to be Borel if for any Borel B ⊂ Y the
pullback f−1[B] is Borel.
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Some examples

1. Any separable Hilbert space is Polish.

2. If H is a separable Hilbert space, then U(H)
is a closed subgroup of its isometry group and
hence Polish.

3. If H is a separable Hilbert space and G is a
countable group, then

∏

G

U(H)

is a countable product of Polish spaces and
hence Polish.

4. Then the collection of unitary representations
of G is a closed subspace of

∏
GU(H), and

hence Polish.

5. Finally it is a slightly non-trivial fact that
the collection of irreducible representations is
a Gδ subset of the collection of all represen-
tations, and hence Polish.
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Definition (Mackey) An equivalence relation
E on a Polish space X is smooth if there is a
another Polish space Y and a Borel function

f : X → Y

such that for all x1, x2 ∈ X we have

f (x1) = f (x2)

if and only if
x1Ex2.

A countable group G has smooth dual if for
any separable Hilbert space H , the equivalence
relation ∼= on Irr(G,H) is smooth.

Question (Mackey, in effect) Which groups
have smooth dual?
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There are various answers in the literature to
Mackey’s question, including Glimm’s solution
of the Mackey conjecture, which applies not
just to discrete groups but more generally lcsc
topological groups.

In the case of discrete groups there is a com-
pletely algebraic characterization.

Theorem 7.1 (Thoma) A countable group G
has smooth dual if and only if it has an abelian
subgroup with finite index.
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There are some very simple, from the point of
view of Borel complexity, non-smooth equiva-
lence relations.

Definition Equip

2N =df

∏

N

{0, 1}

with the product topology.

Let E0 be the equivalence relation of eventual
agreement on 2N.

Lemma 7.2E0 is not smooth.

E0 itself is Fσ as a subset of 2N. The com-
plexity of its classification problem has little do
with any complexity it might have as a subset
of 2N × 2N.
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It turns out that at the base of Glimm’s proof
of the Mackey conjecture is a theorem to the
effect that under certain circumstancesE0 is the
canonical obstruction to smoothness.

This was generalized by Ed Effros.

The final and ultimate generalization to the
abstract theory of Borel equivalence relations
was obtained by Leo Harrington, Alexander Kechris,
and Alain Louveau in the late 1980’s and in turn
sparked a new direction of research in descrip-
tive set theory.
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