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1 Recall

Definition The cardinality of X is less than
or equal to Y ,

|X| ≤ |Y |,

if there is an injection from X to Y .

This might suggest a notion of “cardinality”
where we restrict our attention to some restricted
class of injections.

This in turn could relate to the idea that an
equivalence relation E on a set X is in some
sense classifiable if there is a “reasonably nice”
or “natural” or “explicit” function

f : X → I

which induces (via x1Ex2 ⇔ f (x1) = f (x2))
an injection

f̂ : X/E → I.
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In the context of unitary group representation
a definition exactly along these lines was pro-
posed by G. W. Mackey.

Definition (Mackey) An equivalence relation
E on a Polish space X is smooth if there is a
Polish space Y and a Borel function f : X → Y
such that

x1Ex2 ⇔ f (x1) = f (x2).

In the way of context and background

1. Borel functions are considered by many math-
ematicians to be basic and uncontroversial,
and concrete in a way that a function sum-
moned in to existence by appeal to the axiom
of choice would not.

2. Many classification problems can be cast in
the form of understanding an equivalence re-
lation on a Polish space
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2 The entry of descriptive set theorists

In the late 80’s two pivotal papers suggested a
variation and generalization of Mackey’s defini-
tion.

A Borel Reducibility Theory for Classes of
Countable Structures, H. Friedman and L. Stan-
ley, The Journal of Symbolic Logic, Vol.
54, No. 3 (Sep., 1989), pp. 894-914

A Glimm-Effros Dichotomy for Borel Equiv-
alence Relations, L. A. Harrington, A. S. Kechris
and A. Louveau, Journal of the American

Mathematical Society, Vol. 3, No. 4 (Oct.,
1990), pp. 903-928

Neither paper referenced the other, and yet
they used the exact same terminology and no-
tation to introduce a new concept.
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Definition Given equivalence relations E and
F on X and Y we say that E is Borel reducible
to F , written

E ≤B F,

if there is a Borel function

f : X → Y

such that

x1Ex2 ⇔ f (x1)Ff (x2).

In other words, the Borel function f induces
an injection

f̂ : X/E → Y/F.

The perspective of Friedman and Stanley was
to compare various classes of countable struc-
tures under the ordering ≤B. The Harrington,
Kechris, Louveau paper instead generalized ear-
lier work of Glimm and Effros in foundational
issues involving the theory of unitary group rep-
resentations.
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Definition Let E0 be the equivalence relation
of eventual agreement on 2N. For X a Polish
space let id(X) be the equivalence relation of
equality on X .

Thus in the above notation we can recast Mackey’s
definition of smooth: An equivalence relation E
is smooth if for some Polish X we have

E ≤B id(X).

It turns out that for any uncountable Polish
space X we have

id(R) ≤B id(X)

and
id(X) ≤B id(R).
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Definition An equivalence relation E on Pol-
ish X is Borel if it is Borel as a subset of X×X .

Theorem 2.1 (Harrington, Kechris, Louveau)
Let E be a Borel equivalence relation. Then
exactly one of the following two conditions
holds:

1. E ≤B id(R);

2. E0 ≤B E.

Moreover 1. is equivalent to E being smooth.

This breakthrough result, this archetypal di-
chotomy theorem, suggested the possibility of
understanding the structure of the Borel equiv-
alence relations up to Borel reducibility, which
in turn has become a major project in the last
twenty years, which I will survey on Friday.
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3 Examples of Borel reducibility in mathematical practice

It turns out that many classical, or near classi-
cal, theorems can be recast in the language of
Borel reducibility.

Example Let (X, d) be a complete, separable,
metric space. Let K(X) be the compact subsets
of X – equipped with the metric D(K1,K2)
equals

supx∈K1
d(x,K2) + supx∈K2

d(x,K1),

where d(x,K) = infz∈Kd(x, z).

Let E be the equivalence relation of isome-
try on K(X). Then Gromov showed that E is
smooth. In other words,

E ≤B id(R).
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Example Let H be a separable Hilbert space
and U(H) the group of unitary operators of H .

Let ∼= be the equivalence relation of conjugacy
on U(H), which is in effect the isomorphism
relation considered in the last talk: T1

∼= T2 if

∃S ∈ U(H)(S ◦ T1 ◦ S−1 = T2).

1. In the case that H is finite dimensional, every
T ∈ U(H) can be diagonalized. This gives a
reduction of ∼= to the equality of finite subsets
of C, and hence a proof that ∼= is smooth.

2. In the case that H is infinite dimensional,
the situation is considerably more subtle, but
the spectral theorem allows us to write each
element of U(H) as a kind of direct integral
of rotations.
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Definition Let S1 be the circle:

{z ∈ C : |z| = 1}

in the obvious, and compact, topology. Let
P (S1) be the collection of probability mea-
sures on S1 – this forms a Polish space in the
topology it inherits from being a closed sub-
set C(S1)∗ in the weak star topology (via the
Riesz representation theorem). For µ, ν ∈
P (S1), set µ ∼ ν if they have the same null
sets.

It then follows from the spectral theorem that

∼=≤B∼ .

The spectral theorem is often considered, though
without the use of the language of Borel re-
ducibility, to provide a classification of the
infinite dimensional unitary operators up to
conjugacy.
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Example For S a countable set, may identify
P(S) with

2S =
∏

S

{0, 1}

and thus view it as a compact Polish space in
the product topology.

A torsion free abelian (TFA) group A is said
to be of rank ≤ n if there are a1, a2, ...an ∈ A
such that every b ∈ A has some m ∈ N with
m · b ∈ 〈a1, ..., an〉.

Up to isomorphism, the rank ≤ n TFA groups
are exactly the subgroups of (Qn, +), and thus
form a Polish space as a subset of P(Qn).

Let ∼=n be the isomorphism relation on sub-
groups of (Qn, +). In the language of Borel
reducibility a celebrated classification theorem
can be rephrased as:

Theorem 3.1 (Baer) ∼=1≤B E0.
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Example Let Hom+([0, 1]) be the orientation
preserving homeomorphisms of the closed unit
interval. In the sup norm metric, this forms a
Polish space.

Let ∼=Hom+([0,1]) be the equivalence relation of

conjugacy.

There is a kind of folklore observation to the
effect that every element of Hom+([0, 1]) can be
classified symbolically, by recording the max-
imal open intervals on which it is increasing,
decreasing, or the identity.

This translates into classifying

Hom+([0, 1])/ ∼=Hom+([0,1])

by countable linear orderings with equipped with
unary predicates Pinc and Pdec up to isomor-
phism. Those in turn can be viewed as forming
a closed subset of 2N×N × 2N × 2N, and we
obtain

∼=Hom+([0,1])≤B
∼=2N×N×2N×2N .
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4 The space of countable models

Definition LetL be a countable language. Then
Mod(L) is the set of all L structures with un-
derlying set N.

Definition Let τqf be the topology with basic
open sets of the form

{M ∈ Mod(L) : M |= ϕ(~a)}

where ϕ(~x) is quantifier free and ~a ∈ N<∞.

τfo is defined in a parallel fashion, except with
ϕ(~x) ranging over first order formulas, and more
generally for F ⊂ Lω1,ω a countable fragment
we define τF similarly with ϕ(~x) ∈ F .

It is not much more than processing the defi-
nitions to show τqf is Polish. For instance for L
consisting of a single binary relation, we obtain
a natural isomorphism with 2N×N. It can be
shown, however, that the others are Polish, and
all these examples have the same Borel struc-
ture.
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Definition For a sentence σ ∈ Lω1,ω we let
∼=σ be isomorphism on Mod(σ), the set of M ∈
Mod(L) with M |= σ.

∼=σ is universal for countable structures if
given any countable language L′ we have

∼=Mod(L′)≤B
∼=σ .

Theorem 4.1 (Friedman, Stanley) The fol-
lowing are universal for countable structures:
Isomorphism of countable trees, countable fields,
and countable linear orderings. Isomorphism
of countable torsion abelian groups is not uni-
versal for countable structures.

One tends to obtain universality1 for such a
class of countable structures , except when there
is an “obvious” reason why this must fail.

For instance, if the isomorphism relation is “es-
sentially countable”.

1The major being torsion abelian groups. The case for torsion free abelian groups remains puzzlingly open, despite

strong indicators it should be universal
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5 Essentially countable equivalence relations

Definition A Borel equivalence relation F on
Polish Y is countable if every equivalence class
is countable.

An equivalence relation E on a Polish space is
essentially countable if it is Borel reducible to
a countable equivalence relation.

An equivalence relation E is universal for es-
sentially countable if it is essentially countable
and for any other countable Borel equivalence
F we have F ≤B E.

Theorem 5.1 (Jackson, Kechris, Louveau)
Universal essentially countable equivalence re-
lations exist. In fact, for F2 the free group on
two generators, the orbit equivalence relation
of F2 on 2F2 is essentially countable.
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Fact 5.2 If an equivalence relation E is es-
sentially countable, then for some2 countable
languages L we have E ≤B

∼=Mod(L).

Theorem 5.3 (Kechris) If G is a locally com-
pact Polish group acting in a Borel manner
on a Polish space X, then the resulting equiv-
alence relation is essentially countable.

In the context of isomorphism types of classes
of countable structures, one can characterize when
an equivalence relation is essentially countable
in model theoretic terms.

Roughly speaking a class of countable struc-
tures with an appropriately “finite character”
will be essentially countable.

In particular, if M ∈ Mod(L) satisfying σ is
finitely generated, then ∼=σ is essentially count-
able.

2In fact, “most”
16



Theorem 5.4 (Thomas, Velickovic) Isomor-
phism of finitely generated groups is univer-
sal for essentially countable.

As in the case of general countable structures,
the tendency is for classes of essentially count-
able structures to be universal unless there is
some relatively obvious obstruction.

In a paper with Kechris, we made a rather
arrogant, reckless, and totally unsubstantiated,
conjecture that isomorphism for rank two tor-
sion free abelian groups would be universal for
essentially countable.

Since E0 is not universal for essentially count-
able, this was hoped to explain the inability of
abelian group theorists to find a satisfactory
classification for the higher finite rank torsion
free abelian groups.
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6 The saga of finite rank torsion free abelian groups

Although many well known mathematical clas-
sification theorems have a direct consequence for
the theory of Borel reducibility, a major moti-
vation has been to use the theory of Borel re-
ducibility to explicate basic obstructions to the
classification of certain classes of isomorphism.

One of the most clear cut cases has been the
situation with finite rank torsion free abelian
groups.

Recall that ∼=n is being used to describe the
isomorphism relation on rank ≤ n torsion free
abelian groups, where we provide a model of the
full set of isomorphism types by considering the
subgroups of Qn.

Theorem 6.1 (Baer, implicitly, 1937)

∼=1≤B E0.
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A kind of mathematically precise justification
for the vague feeling that rank two torsion free
abelian groups did not admit a similar classifi-
cation was provided by:

Theorem 6.2 (Hjorth, 1998) ∼=2 is not Borel
reducible to E0.

In some sense this addressed the soft philo-
sophical motivation behind the conjecture with
Kechris, but not the hard mathematical formu-
lation with which it faced the world. This was
left to Simon Thomas, who in a technically bril-
liant sequence of papers showed:

Theorem 6.3 (Thomas, 2002, 2004) At ev-
ery n

∼=n<B
∼=n+1 .
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In general, and this lies at the heart of the
technical mountains Thomas had to overcome,
almost all the results to show that one essen-
tially countable equivalence relation is not Borel
reducible to another rely on techniques coming
entirely outside logic, such as geometric group
theory, von Neumann algebras, and the rigidity
theory one finds in the work of Margulis and
Zimmer.

In recent years the work of logicians in this
area has begun to communicate and interact
with mathematicians in quite diverse fields.

However, it has gradually become clear that
many of the problems we would most dearly
like to solve will not be solvable by the measure
theoretic based techniques being used in these
other fields. For instance....
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Question Let G be a countable nilpotent group
acting in a Borel manner on a Polish space with
induced orbit equivalence relation EG. Must we
have

EG ≤B E0?

The problem here is that with respect to any
measure we will have EG ≤B E0 on some conull
set, and thus measure will not be a suitable
method for proving the existence of a counterex-
ample. In an enormously challenging and strik-
ingly original fifty page manuscript, Su Gao and
Steve Jackson showed EG ≤B E0 when G is
abelian.

Many of these issues relate to open problems
in the theory of Borel dichotomy theorems and
the global structure of the Borel equivalence re-
lations under ≤B.3

3Next talk
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7 Classification by countable structures

Definition An equivalence relation E on a Pol-
ish space X is classifiable by countable struc-
tures if there is a countable language L and a
Borel function

f : X → Mod(L)

such that for all x1, x2 ∈ X

x1Ex2 ⇔ f (x1)
∼= f (x2).

Here one might compare algebraic topology,
where algebraic objects considered up to iso-
morphism are assigned as invariants for classes
of topological spaces considered up to homeo-
morphism.

Again it turns out that some well known classi-
fication theorems have the direct consequence of
showing that some naturally occurring equiva-
lence relation admits classification by countable
structures.
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Example Recall ∼=Hom+([0,1]) as the isomor-

phism relation on orientation measure preserv-
ing transformations of the closed unit interval.
Then the folklore observation mentioned from
before in particular shows that ∼=Hom+([0,1]) is

classifiable by countable structures.

Example A Stone space is a compact zero di-
mensional Hausdorff space. There is a fixed
topological space X (for instance, the Hilbert
cube), such that every separable Stone space
can be realized as a compact subspace of X .
Then S(X), the set of all such subspaces, forms
a standard Borel space, and we can let ∼=S(X)
be the homeomorphism relation on elements of
S(X).

Stone duality, the classification of Stone spaces
by their associated Boolean algebras, in particu-
lar shows that ∼=S(X) is classifiable by countable
structures.
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Example For λ the Lebesgue measure on [0, 1],
let M∞ be the group of measure preserving
transformations of ([0, 1]λ) (considered up to
equality a.e.).

A measure preserving transformation T is said
to be discrete spectrum if L2([0, 1], λ) is spanned
by eigenvalues for the induced unitary operator

UT : f 7→ f ◦ T−1.

It follows from the work of Halmos and von
Neumann that such transformations considered
up to conjugacy in M∞ are classifiable by count-
able structures.
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Example The search for complete algebraic in-
variants has recurrent theme in the study of C∗-
algebras and topological dynamics.

Consider minimal (no non-trivial closed invari-
ant sets) homeomorphisms of 2N

Let ∼C(2N) be conjugacy of orbit equivalence

relations: Thus

f1 ∼C(2N) f2

if there is some homeomorphism g conjugating
their orbits:

∀~x(g[{f ℓ
1(~x) : ℓ ∈ Z}] = {f ℓ

2(g(~x)) : ℓ ∈ Z}).

Giordano, Putnam, and Skau produce count-
able ordered abelian groups which, considered
up to isomorphism, act as complete invariants.

Their theorem implicitly shows ∼C(2N) to be

classifiable by countable structures.
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8 Turbulence

This a theory, or rather a body of techniques,
explicitly fashioned to show when equivalence
relations are not classifiable by countable struc-
tures.

Definition Let G be a Polish group acting con-
tinuously on a Polish space X . For V an open
neighborhood of 1G, U an open set containing
x, we let

O(x, U, V ),

the U-V -local orbit, be the set of all x̂ ∈ [x]G
such that there is a finite sequence

(xi)i≤k ⊂ U

such that
x0 = x, xk = x̂,

and each
xi+1 ∈ V · xi.
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Definition Let G be a Polish group acting con-
tinuously on a Polish space X . The action is
said to be turbulent if:

1. every orbit is dense; and

2. every orbit is meager; and

3. for x ∈ X , the local orbits of x are all some-
where dense; that is to say, if V is an open
neighborhood of 1G, U is an open set contain-
ing x, then closure of O(x, U, V ) contains an
open set.

Theorem 8.1 (Hjorth) Let G be a Polish group
acting continuously on a Polish space X with
induced orbit equivalence relation EG.

If G acts turbulently on X, then EG is not
classifiable by countable structures.

This has been the engine behind a number of
anti-classification theorems.
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Example (Kechris, Sofronidis) Infinite dimen-
sional unitary operators considered up to uni-
tary conjugacy do not admit classification by
countable structures.

Example (Hjorth) The homeomorphism group
of the unit square,

Hom([0, 1]2),

considered up to homeomorphism does not ad-
mit classification by countable structures.

Example (Gao) Countable metric spaces up to
homeomorphism does not admit classification
by countable structures.

Example (Törnquist) Measure preserving ac-
tions of F2 up to orbit equivalence do not admit
classification by countable structures.
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